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This course

Schedule

Hoorcollege: 15-17 Weds & 11-13 Fri in H0.08, + 13-15 27/09 in C0.05
Werk/laptopcollege: check own timetable Deadline: Sunday 23:59
6 EC = 168 hours in total = 28 hours / week

Assessment

30% homework & laptop +35% midterm + 35% final
All homeworks count - 25% penalty per day for late hand-ins, with max cut-off
of 2 days. May be waived in sickness (need proof from studieadviseur).
Werkcollege not mandatory, but you get 2 points per class
Minimum of 5.5 in your homework and a minimum of 5.5 in combined exams
to pass the course

People

Hoorcollege: Dr Daniel Worrall
Werkcollege: Dr Gaelle Fontaine gaelle.marie.fontaine@gmail.com

All questions should be directed to Gaelle

Dr Daniel Worrall (UvA) BSML 01 September 1, 2019 2 / 56



Homework

You should upload a photocopy of your homework to Canvas by 11.59pm on
Sunday of the week it is set

Plagarism is not allowed. Once = 0 points, twice = students reported to
commission

Marks comes out the following Friday

Sick policy: you can miss an extra homework due to sickness (need to have
confirmation from study-advisor) and we shall take the average of the
remaining homeworks

No working out, no points
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Syllabus/Timetable

1 Probability spaces

What is machine learning
Classical probability theory

2 Random Variables

Random variables
Estimators and Moments

3 More Random Variables

Moment generating functions
Change of variables

5 Maximum likelihood

Maximum likelihood estimation

6 Bayesian probability and statistics

Bayesian inference
MAP estimation

7 Model comparison

Bayesian model comparison
Review

Dr Daniel Worrall (UvA) BSML 01 September 1, 2019 4 / 56



Books and resources

I have compiled this course from many sources.

Probability, Random Processes, and Statistical Analysis, Hisashi Kobayashi,
Brian L. Mark, and William Turin

Information Theory, Inference, and Learning Algorithms, David J. C. Mackay,
Ch 2 & 3, (free at http://www.inference.org.uk/itila/book.html)

Pattern Recognition and Machine Learning , Christopher Bishop, Ch 1 - 3
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Statistical modelling

I: What is Machine Learning?
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I: Supervised learning

We will focus on two areas of machine learning called supervised learning and
unsupervised learning .

Supervised learning problems have 3 parts

Data: inputs x and outputs y

Model space: a collection of models M which convert inputs into outputs

Algorithm: a method to choose the best model m ∈M from the model
space1, which best fits the data

Unsupervised learning is supervised learning, without outputs y (more about this
later)

1The notation ‘∈’ is pronounced in, so m ∈M is spoken ‘m in M’
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I: Example 1 - Handwritten digit recognition

Handwritten digit recognition

inputs: 28× 28 pixel images, with
pixel values in {0, ..., 255}
outputs: labels in {0, 1, 2, ..., 9}
model: ?

Suggestion: Collect examples of handwritten digits {x1, x2, ...} with labels
{y1, y2, ...} and build a lookup table. If new input x∗ = xj , where
xj ∈ {x1, x2, ...}, then its predicted label is y∗ = yj .

Problem 1: What happens if we have never seen x∗ before?

Problem 2: What happens if we feed in something which is not a number?

Problem 3: Are there ways in which we can quantify how good our model is?
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I: Example 2 - Machine Translation

‘Als Gregor Samsa eines Morgens aus unruhigen Träumen erwachte, fand
er sich in seinem Bett zu einem ungeheuren Ungeziefer
verwandelt.’ Franz Kafka, (1915)

———————–

‘As Gregor Samsa awoke one morning from uneasy dreams he found
himself transformed in his bed into a gigantic
insect.’ Edwin and Willa Muir, (1933)

‘When Gregor Samsa woke up one morning from unsettling dreams, he
found himself changed in his bed into a monstrous
vermin.’ Stanley Corngold, (1972)

‘One morning, upon awakening from agitated dreams, Gregor Samsa
found himself, in his bed, transformed into a monstrous
vermin.’ Joachim Neugroschel, (1993)
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I: Example 2 - Machine Translation

Machine translation is an input–output task

inputs: variable length German strings

outputs: variable length English strings

Problem 1: Each word has multiple translations

Problem 2: We cannot possibly collect all input–output pairs

Problem 3: What even is a good translation?

Many of the problems we have seen can be addressed (to some extent) by
thinking probabilistically . To understand what this means though, we need to
learn, what probability is.
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I: Example 3 - Regression

Machine translation is an input–output task

inputs: real numbers xi ∈ R
outputs: real numbers yi ∈ R

Problem 1: How to handle residual error?

Problem 2: Is a linear model the best we can do?

Problem 3: What about higher dimensions?

We will see later in the course that the previous two examples are just variants to
of regression (in a very liberal sense).
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I - The Nature of Machine Learning

Machine learning is a primarily conceptual discipline.

The language of machine learning is mathematics!

Probability theory

Calculus and optimization in higher dimensions

Linear algebra

We implement our mathematical models on computers, which is where
programming comes in.

But do not be deceived by popularized preconceptions. Without a firm grasp of
the mathematical basics it will be difficult to proceed with just coding!
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Probability Theory Foundations

II: Probability Theory Foundations
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Probability versus statistics

probability: a mathematical formalism describing uncertain events

statistics: the science of collecting and analysing data

Bayesian statistics is a branch of statistics loved by machine learners for its
computational nature.

Main questions to address:

Why is this useful?

What can we say about uncertain events?

What can be measured?
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Intuitive probability

Take a coin. Label heads with 1 and tails with 0. Now flip
the coin N times and take the average. Now do this again
multiple times.

Trial 1 Trial 2 Trial3 Trial4 Trial 5
N = 10 0.5000 0.8000 0.6000 0.6000 0.2000
N = 100 0.4800 0.4800 0.4800 0.5400 0.5400
N = 1000 0.4950 0.5130 0.5080 0.5080 0.4850
N = 10000 0.4967 0.5031 0.4980 0.4988 0.4934

Despite the fact that in each trial we get a different result, there is a trend!

As N →∞, what do you think will happen?
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Frequentist probability

Probabilities can represent frequencies
e.g. Flip a coin N times, define N(H) to be the number of
times it lands heads. The relative frequency fH(N) of
landing heads is

fH(N) =
N(H)

N

The probability of the coin landing heads, written P (H) is

P (H) := lim
N→∞

fH(N).

The symbol limN→∞ is called a limit. It is the formal way to say “when N gets
really really big”.

This is the Classical (or frequentist) interpretation of probability: the probability
of an event is defined as its long run frequency in a repeatable experiment.
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Frequentist probability
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Frequentist probability
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Frequentist probability
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Frequentist probability
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Bayesian probability

Probabilities can represent beliefs

e.g. Given the results of a blood test, the probability
that Rutger has a nasty disease is p%

.

.
e.g. The probability that the UK will leave the EU on
Hallowe’en is q%

Such claims cannot be verified through repeated experimentation. This
subjective interpretation or Bayesian interpretation expresses degree of belief .

Both frequentist and Bayesian interpretations of probability are treated
with the same theory

The first half of this course is primarily classical/frequentist, the second half is
chiefly Bayesian.
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Frequentist or Bayesian?

For each of the following scenarios, is the probability frequentist or Bayesian?

Q: You go Leidseplein and drop your wallet, the probability it is still there to-
morrow morning is 1%.

.

.
Q: In the USA 4 people die a year from vending machine-related accidents: that’s
a 0.00001 % chance.

.

.
Q: You take a statistics course delivered by a (young and intelligent) machine
learning researcher, the probability you pass his course is 70%.

.

.
Q: The odds of being born with 11 fingers or toes is 0.2%
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Sample space

Sample Space2

What objects can take probabilities? A sample space Ω is a mathematical
abstraction, describing the set of possible outcomes of an experiment. Each
outcome is called a sample point or just sample3 ω ∈ Ω. We might also use lower
case letters a, b, ... or a1, a2, ... to denote samples.

e.g. We flip two coins. Denote heads as h and tails as t. There are four possible
outcomes hh, ht, th, and tt. Each outcome is a sample point and

Ω = {ω1, ω2, ω3, ω4} = {hh, ht, th, tt}

e.g. I wait for a bus at the bus stop. In theory, I could wait forever for the bus,
so the sample space is the positive half-line:

Ω = {ω : 0 ≤ ω <∞}

2Due to Richard von Mises, who used the German word ‘Merkmalraum’
3Notation: ω ∈ Ω (pronounced ω ‘in’ Ω) means that ω is an element in the set Ω.

e.g.hh ∈ {hh, ht, th, tt}, but −4 /∈ {ω : 0 ≤ ω <∞}.
Dr Daniel Worrall (UvA) BSML 01 September 1, 2019 23 / 56



Events

Events
An event E ⊆ Ω is a set of sample points. We
denote it with E or capital letters A,B, ... or
A1, A2, ....

e.g. In the two coin example the event that at
least one head is thrown is

A = {hh, ht, th}

e.g. The event that I wait less than t minutes
for my bus is

Et = {ω : 0 ≤ ω < t minutes}

A event consisting of a single sample,
e.g.B = {hh}, is called a simple event.
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Venn Diagrams
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Useful definitions

Useful definitions

1 The complement of event A, denoted Ac is all points in Ω except those in A:
Ac := {ω : ω /∈ A}.

2 The union of A and B, denoted A ∪B is the all samples in at least one of A
or B: A ∪B := {ω ∈ A or B}.

3 The intersection of A and B, denoted A ∩B is all samples in both A and B:
A ∩B := {ω ∈ A and B}.

4 The event containing no samples is the null event ∅, e.g.A ∩Ac = ∅.

5 The certain event is the event containing all samples. It is the sample space,
so A ∪Ac = Ω. Clearly Ωc = ∅ and ∅c = Ω.

6 A and B are called disjoint or mutually exclusive if they have no sample
points in common A ∩B = ∅.
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Event spaces

Event spaces
The power set P(Ω) is the set of all subsets E ⊆ Ω of set Ω.

e.g. From the set Ω = {a, b} derive the power set.

P(Ω) = {∅, {a}, {b},Ω}

A simple way to think of it is as the set of all events.

In probability theory, this space is the space, on top of which we shall define
probabilities. It is usually given the name of event space or σ-algebra4, and the
symbol F .

4In truth, this is only true in the discrete setting. When the sample space Ω is continuous,
the σ-algebra is a subset of Ω, with special conditions beyond the scope of this course.
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Probability

Probability mass functions
A probability mass function (PMF) P : F → [0, 1] assigns a
number ina [0, 1] to every event in the event space F .

P (A) = 1 means that A ∈ F is certain

P (A) = 0 means that A ∈ F will never happen

If P (A) > P (B), then A is more likely than B

e.g. In the two coin example we could have

P (hh) = P (ht) = P (th) = P (tt) = 1/4.

e.g. Distribution of English letters Ω = {a, b, ..., z,−}. PMF
shown on right with corresponding Hinton diagramme.

aThis means a number between 0 and 1, including both 0 and 1
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Probability mass functions

Intuitively, you can imagine that P (A) measures the size5 of event A in sample
space. The bigger the size of A, the bigger P (A). By this logic,

P (Ω) = 1, and P (∅) = 0.

For disjoint events A and B, we have that

P (A ∪̇B) = P (A) + P (B)

since the size of A plus the size of B is the size of the combined object. In
general, if we take P (A∪B), then we have to discount the size of the intersection

P (A ∪B) = P (A) + P (B)− P (A ∩B).

You will prove this in the huiswerk.

5Indeed, the modern treatment of probability theory is as a branch of the much more general
measure theory. Measure theory is the theory of how to assign sizes to mathematical objects.
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The Kolmogorov Axioms*

The Kolmogorov Axioms

The probability of an event is a non-negative real number

P (E) ≥ 0 for all E ⊆ Ω

Certain events have unit probability

P (Ω) = 1

e.g.P (hh) + P (ht) + P (th) + P (tt) = 1

Countable additivity: for disjoint events E1, E2, ..., EN

P (E1 ∪̇E2 ∪̇ ... ∪̇EN ) = P (E1) + P (E2) + ...+ P (EN )

e.g.P (hh) + P (ht) = 0.5

Incredibly all results in probability theory can be derived from various
combinations of these 3 axioms6.

6Bayesians actually have their own set of axioms called Cox’s axioms.
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Cumulative mass functions

If samples have a natural ordering (e.g.n ∈ {0, 1, 2, 3, ...}) the cumulative mass
function (CMF) F assigns mass to a events of the form {n : n ≤ x}, thus
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Cumulative mass functions

Which of the following, if any, are valid CMFs?
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Joint and conditional probability

Joint probability
Given events A and B, the joint probability is written

P (A,B)

It is the probability of A and B happening together. In
set-builder notation P (A,B) = P (A ∩B).

Ω

A
B

P (A,B) = P (A ∩ B)

e.g. I go to Albert Heijn to buy groceries. Let A be the event that they run out
of hummus. Let B be the event I leave my wallet at home. Then P (A,B) is the
probability that AH runs out of hummus AND I leave my wallet at home.

The ordering of A and B is unimportant, so

P (A,B) = P (B,A).

Note that in general P (A,B) 6= P (A) + P (B). Why?
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Conditional probability

Conditional probability
We write the conditional probability as

P (A|B)

This is the probability of A occurring given that B already has.

e.g. We talk of the probability of event A (me winning the lottery), given event
B (I purchased a lottery ticket). Clearly in this case P (A|Bc) = 0, since you
cannot win the lottery without a ticket.

In terms of our size analogy P (A|B) is the relative size
of A ∩B to B. This is just a ratio

P (A|B) =
P (A,B)

P (B)
.

Obviously this only makes sense if P (B) 6= 0.

Ω

A
B

P (A|B) = P (A∩B)
P (B)
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Trees

Conditional probability
Joints and conditionals model different parts of a sequence of events

P (A)

P (Ac)

P (A,B)

P (A,Bc)

P (Ac, B)

P (Ac, Bc)

P (B|A)

P (B c|A)

P (B|A
c)

P (B c|Ac)

The above tree diagram shows possible sequences. The conditional probabilities
model the transition probabilities passsing from one state to another.

P (A,B) = P (B|A)P (A)
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Conditional probability

e.g. Let P (A) = 0.3 be the probability a shop places product X at eye-level on
the shelves. Let P (B|A) = 0.05 be the probability that a customer puts product
X in their basket given that it was at eye-level.

What is the probability X in my basket and it was at eye-level?

P (B,A) = P (B|A)P (A) = 0.3 · 0.01 = 0.003

e.g. What is7 ∑
B

P (B|A) =

e.g. What is ∑
A

P (B|A) =

7The notation
∑

B is a shorthand for sum over every possible value of B
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Sum and product rule

To master probability, you only need two rules.

The product rule:

P (A,B) = P (A|B)P (B).

This follows directly from the definition of the conditional probability.

The sum rule:

P (A) =
∑
B

P (A,B).

A fancy name for this is marginalization, and the term P (A) is refered to as
marginal probability . We see that it is true from the fact∑

B

P (A,B) =
∑
B

P (B|A)P (A)︸ ︷︷ ︸
product rule

= P (A)
∑
B

P (B|A)︸ ︷︷ ︸
=1

= P (A)
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Sum and product rule

e.g. Data is stored on a hard drive in binary format. At a given location, the probability that
a 0 is stored is 0.47. Random corruption occurs such that 0s sometimes get read as 1s with
probability p but a 1 is never read as a 0. What is the marginal probability distribution that a
1 is read?

Denoting an input of x as xin, an output of y as yout, we have

P (1out|1in) = 1 P (0out|1in) = 0 P (1out|0in) = p P (0out|0in) = 1− p P (0in) = 0.47

Using the sum rule

P (1out) =
∑

ω∈{0in,1in}
P (1out, ω) (sum rule)

=
∑

ω∈{0in,1in}
P (1out|ω)P (ω) (product rule)

= P (1out|0in)P (0in) + P (1out|1in)P (1in)

= p · 0.47 + 1 · (1− 0.47)

= 0.53 + 0.47p

If p = 0, then we read as many 1s are were originally written. If p = 1, we only ever read 1s.
Otherwise, the number of ones we read is somewhere in between.
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Sum and product rule: Random walks

e.g. I flip a coin. If it lands heads, I win e1. If it lands tails, I lose e1. If I have
no money, I stop playing. The probability of heads is 0.5. I start with e1.

After n = 1, 2, 3 flips, what is the PMF of possible outcomes?
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Such diagrams are called trellises, they are trees with merges.
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Sum and product rule contd.

In general, we can have N variables in a joint, so

P (A1, A2, A3, ..., AN ).

For instance, I may have N coins, which I flip.

Summing over a variable essentially deletes it from the joint, so

P (A2, A3, ..., AN ) =
∑
A1

P (��A1, A2, A3, ..., AN )

and of course you can sum over more than one variable at a time.

What is this equal to?∑
A1

∑
A2

· · ·
∑
AN

P (A1, A2, A3, ..., AN )
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Sum and product rule contd.

e.g. I flip 3 coins X,Y, Z with probability of heads 0.4, 0.5, 0.55, respectively. If heads is 1,
tails is 0. What is the probability that the sum S of the values is 0, 1, 2, or 3?

If we always write the results of the the coin flips in order P (X,Y, Z) then

P (S = 0) = P (0, 0, 0) = 0.6 · 0.5 · 0.45 = 0.135

P (S = 1) = P (1, 0, 0) + P (0, 1, 0) + P (0, 0, 1)

= 0.4 · 0.5 · 0.45 + 0.6 · 0.5 · 0.45 + 0.6 · 0.5 · 0.55

= 0.090 + 0.135 + 0.165 = 0.39

P (S = 2) = P (1, 1, 0) + P (1, 0, 1) + P (0, 1, 1)

= 0.4 · 0.5 · 0.45 + 0.4 · 0.5 · 0.55 + 0.6 · 0.5 · 0.55

= 0.090 + 0.110 + 0.165 = 0.365

P (S = 3) = P (1, 1, 1) = 0.4 · 0.5 · 0.55 = 0.110
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Sum and product rule contd.

Likewise, the product rule can be applied to big joints. There are actually many
ways to expand the joint because of the symmetry of the arguments e.g.

P (A,B) = P (A|B)P (B) = P (B|A)P (A)

P (A,B,C) = P (A|B,C)P (B|C)P (C)

= P (A|B,C)P (C|B)P (B)

= P (B|A,C)P (A|C)P (C)

= P (B|A,C)P (C|A)P (A)

= P (C|A,B)P (A|B)P (B)

= P (C|A,B)P (B|A)P (A)
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Bayes’ Theorem

Bayes’ Theorem
Using the product rule, another way to write conditional probabilities is

P (A|B) =
P (B|A)P (A)

P (B)

This is an extremely important rule to “reverse” conditional probabilities.

In many cases we are not given marginal probability P (B), but we can compute it
from the sum rule as P (B) =

∑
A P (B|A)P (A), so

P (A|B) =
P (B|A)P (A)∑
A P (B|A)P (A)
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Bayes’ Theorem contd.

e.g. You go to the doctor with trouble breathing, the doctor asks you for a blood sample.
A test is run and it returns positive (positive is indicative of cancer). You ask the doctor how
likely it is that you really have lung cancer and she says “The blood test returns positive for 95%
of all people with lung cancer and 2% for all those who are otherwise healthy. The probability
that somebody your age has lung cancer of is 0.01”. Unsure what this means, you apply Bayes’
rule.

Let cancer be the event you have cancer and pos be the event that the test is positive. We
want to know P (cancer|pos).

We know

P (cancer) = 0.01 P (pos|cancer) = 0.95 P (pos|cancerc) = 0.02

So

P (cancer|pos) =
P (pos|cancer)P (cancer)

P (pos)
(Bayes’ theorem)

=
P (pos|cancer)P (cancer)

P (pos|cancer)P (cancer) + P (pos|cancerc)P (cancerc)
(sum rule)

=
0.95 · 0.01

0.95 · 0.01 + 0.02 · (1− 0.01)
' 0.324
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Probability Densities

III: Probability Densities
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Probability on an interval

PMFs are defined for discrete sample spaces, we now turn our attention to
probability density functions (PDFs), defined on continuous sample spaces.

Let’s first consider a toy scenario.

Probability of intervals
You buy a box of cookies from the cookie shop. Before
you share them with your favourite TAs and esteemed
lecturer, you weigh them all. You do this every day for a
year and then compute a rough estimate of the
distribution of cookie weights.

How do you measure the probability of a continuous
value such as weight? With discrete valued outcomes, we
simply enumerated every possible outcome and measured
the relative frequency f(N) in the limit of large N . We
cannot do that if we have an infinite number of
outcomes!
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Probability on an interval

Answer: discretise the sample space into disjoint (non-overlapping) intervals.
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Probability on an interval

Take an interval (x− δ, x+ δ) and denote the probability mass in this interval by
P (x− δ < X < x+ δ). It is the area of a bar!

As δ → 0, we expect the area to go to zero

lim
δ→0

P (x− δ < X < x+ δ) = 0.

But this is just P (x) so

P (x) = 0

We have to rethink probability in continuous spaces.
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Cumulative density functions

Cumulative density function
Let’s begin by introducing the cumulative density function (CDF)

F (x) = P (X ≤ x).

It is the probability that an outcome (the weight of our cookie) X is less than
some fixed number x. (We already saw the CMF for discrete variables).

Clearly for cookies, X takes values between 0 and ∞, so

F (0) = 0, F (∞) = 1

On a different sample space, say X ∈ R, where X may be electronic charge

F (−∞) = 0, F (∞) = 1
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Cumulative Density of Cookies

We also have that F (x) ≤ F (y) =⇒ x ≤ y, which is called monotonicity.
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Probability density functions

Probability density function
The probability density function (PDF) p(x) is the derivative of the CDF at x.

p(x) :=
dF

dx

Note that we use a small p for probability density and big P for probability mass.
We have p(x) ≥ 0 due to the monotonicity, but this is NOT a probability.

p(x) can be larger than 1.
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Exponential distribution

e.g.

The CDF of the exponential distribution is

F (x) = 1− e−λx x ≤ 0, λ > 0

The PDF is

p(x;λ) =
dF (x)

dx

=
d

dx

[
1− e−λx

]
= λe−λx x ≤ 0, λ > 0

This is a popular distribution for modelling
waiting times. It has a parameter λ. It controls
the shape of the distribution
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Probability density functions

From PDF to CDF
We can regain the CDF from the PDF as

F (x) =

∫ x

−∞
p(x′) dx′

Integrals return the area under a curve.

It is the infinite sum of infinitesimally
wide columns of height p(x) and width
dx.

The probability of each column is
p(x) dx.
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More densities

We can use the PDF to measure the probability of x being in some interval [a, b]

P (a ≤ X ≤ b) = P (X ≤ b)− P (X ≤ a)

= F (b)− F (a)

=

∫ b

−∞
p(x) dx−

∫ a

−∞
p(x) dx

=

∫ b

a

p(x) dx

PDFs can be used in joints; conditionals; marginals; Bayes’ rule; and the sum and
product rules, just like PMFs.
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More densities: Normalization

A PDF p(x) is not a probability, but

p(x) ≥ 0 for all x since CDFs are monotonic non-decreasing∫∞
−∞ p(x) dx = 1 since F (∞) = 1

e.g. If β > 1, x ≥ 1, find the normalization constant Z for

p(x;β) =
1

Z
x−β

Well ∫ ∞
1

1

Z
x−β dx =

1

Z

[
1

1− β
x1−β

]∞
1

=
1

Z

[
0− 1

1− β

]
=

1

Z(β − 1)
= 1

=⇒ Z =
1

β − 1
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More densities: Normalization

e.g. If x ∈ R, find the normalization constant Z for

p(x;β) =
1

Z
e−(βx+e

−βx)

Substitute u = e−βx, so du = −βe−βx dx

∫ ∞
−∞

1

Z
e−(βx+e

−βx) dx =
1

Z

∫ ∞
−∞

e−e
−βx

e−βx dx = − 1

Z

1

β

∫ 0

∞
e−u du

=
1

Z

1

β

[
−e−u

]∞
0

=
1

Z

1

β
= 1

=⇒ Z =
1

β
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