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Recap

Last week, we examined sample spaces Ω, event spaces F , and probability
measures1 P : F → [0, 1].

The triple (Ω,F , P ) defines a probability space.

Given a probability space, we are now in position to measure certain properties.
These properties will hopefully correspond to real-life, ‘measurable’ quantities.

1Probability measure is the catch-all term for PMF and PDF.
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Statistical modelling

I: Random Variables
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Random variables

In science, we do not work with events, but rather, we are given a (finite) number
of samples or observations D = {x1, x2, ..., xN}, whose distribution is P (x).

It is the job of statisticians to recover P (x) from the dataset D.

{x1, x2, ..., xN}
something clever

−−−−−−−−−→ P (x)

Before we do that, we are going to study how to sample from P (x)

P (x)
sampling

−−−−−−−−−→ {x1, x2, ..., xN}

We will then study the behaviour of functions of these samples, so that we can
construct functions, which measure useful properties of P (x).
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Random variables

Random variable
A random variable X : Ω→ X is a map from sample space Ω to numbers2 X .

e.g. The sample space for a single coin is Ω = {head, tail}. We can map this
to the real numbers as such

X(ω) =

{
1, if ω = heads

0, if ω = tails

e.g. The number of hot dogs n I eat in a hot-dog eating competition has sample
space Ω = {0, 1, 2, 3, ...}. The RV X for the number of hot dogs I do eat is

X(ωn) = n.

Random variables are useful, because we can do maths with them e.g. 0 + 1, when
the corresponding operations make no sense on sample space e.g. heads + tails

2Nit-picky statisticians say that a random variable is a map from sample space to a
‘measurable space’, a technicality we will not go into.
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Random variables

Random variables can also be more complicated functions of the sample spaces.

e.g. Consider throwing two dice.

Ω = {(1, 1), (1, 2), . . . , (2, 1), (2, 2), . . . , (6, 6)}

We can define multiple random variables:

X The sum of eyes on both dice.

Y The product of the number of eyes on each die.

Z The number of eyes on the first die

For ω = (2, 3), the random variables take the following values:

X(ω) = 5, Y (ω) = 6, Z(ω) = 2
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Random variables

The probability that random variable X takes on value x is

P (X = x)

A random variable only takes on a value after an experiment has taken place.

e.g. In our hot dog eating example I may have P (X = 3) = 0.5.

The notation

X ∼ P (x)

is used to denote that random variable X is distributed according to p(x).
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Machine Learning Notation
The notation P (X = x) is explicit, but machine learning people are a bit sloppy,
writing P (x) instead. Others prefer to write PX(x), it really depends on your
preference.

To make things more confusing, machine learning people sometimes also refer to
x as the random variable, instead of X!

We are going to be true machine learners and adopt this (lazy)
convention. Furthermore, we will write P (x) instead of P (X = x).
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Statistical modelling

II: Maths With Random Variables
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Sample Means

Say I roll an unbiased die. We represent the values of its sides with random
variable x. When I roll it 5 times, the resulting samples are {4, 2, 6, 2, 1}. The
average of the samples, called the sample mean x̄ is

x̄ =
4 + 2 + 6 + 2 + 1

5
= 3.

In general, for samples {x1, x2, ..., xN}, the sample mean x̄ is

x̄ =
1

N

N∑
n=1

xi

Note that the sample mean is a function of the samples! For different sets of
samples, the sample mean is different.

If someone gave you the PMF P (x), what sample mean would you expect?
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Expected mean

Say I now roll the die N times. Denoting the number of times we see the number
1 as N1, 2 as N2, etc., the general formula for die averages is

x̄(N) =
1 ·N1 + 2 ·N2 + 3 ·N3 + 4 ·N4 + 5 ·N5 + 6 ·N6

N

Let’s take the limit N →∞,

x̄(∞) = lim
N→∞

[
1 · N1

N
+ 2 · N2

N
+ 3 · N3

N
+ 4 · N4

N
+ 5 · N5

N
+ 6 · N6

N

]
= 1 · P1 + 2 · P2 + 3 · P3 + 4 · P4 + 5 · P5 + 6 · P6

We have that limN→∞
Ni
N = Pi from the frequentist definition of probability.
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Expected Means

Expected means
Introducing the symbol µ := x̄(∞), we have that

µ =
∑
x∈X

xP (x) or µ =

∫
X
xp(x) dx.

e.g. Waiting times t are modelled by an exponential distribution

p(t;λ) = λe−λt.

The mean waiting time of p(t;λ) is [HINT:
∫∞

0
xe−x dx = 1]

µ =

∫ ∞
0

x · λe−λx dx =
1

λ

∫ ∞
0

ye−y dy =
1

λ
.
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Means
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Means

e.g. A computer vision system is used to sort out carrots on a conveyor belt
according to their size x cm. Long carrots (x > 10 cm) are sold directly to
supermarkets, all other carrots are used to make soup, which is then sold.
The distribution of carrot lengths is known to follow a uniform distribution

p(x) = U(x; 6, 20) =
1

14
I [x ∈ [6, 20]]

What is the mean length of carrots not turned into soup?

Answer We know the distribution of carrots larger than 10 cm is uniform, with

p(x|x > 10) = U(x; 10, 20)

so the mean is∫ 20

10

x · 1

20− 10
dx =

1

10

[
x2

2

]20

10

=
1

10

(
202

2
− 102

2

)
= 15
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Expectations

Expectations
Say instead of taking the mean of x, we took the mean of x2? What would be the
formula for the expected squared mean? Quite simply

x2(N) =
12 ·N1 + 22 ·N2 + 32 ·N3 + 42 ·N4 + 52 ·N5 + 62 ·N6

N

Taking limit N →∞,

x2(∞) = 12 · P1 + 22 · P2 + 32 · P3 + 42 · P4 + 52 · P5 + 62 · P6

so in general

µ =
∑
x∈X

x2P (x) or µ =

∫
X
x2p(x) dx.
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Expectations

Expectations
The expectation of a function f : X → Y of a random variable x is

Ex[f(x)] =
∑
x

f(x)P (x) or Ex[f(x)] =

∫
f(x)p(x) dx.

Sometimes we also see the notation Ex[f ], Ex∼P (x)[f ], EP [f ], or EP (x)[f ]. We
just use E[f(x)] instead of Ex[f(x)], when it is obvious.

Think of passing samples of p(x) through f and taking the mean in Y.

The mean function is just the expectation of the random variable x,

µ = E[x]
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Expectations

e.g. What is E[x3] where p(x) = U(x; 0, 1)

E[x3] =

∫ 1

0

x3p(x) dx

=

∫ 1

0

x3 · 1 dx

=

[
1

4
x4

]1

0

=
1

4
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Expectations

Expectations are linear operators, so

E[ax+ b] = aE[x] + b.

This follows directly from the linearity of the summation/integral

E[ax+ b] =
∑
x∈X

(ax+ b) · P (x)

=
∑
x∈X

a · xP (x) + b · P (x)

=
∑
x∈X

a · xP (x) +
∑
x∈X

bP (x)

= a
∑
x∈X

xP (x)︸ ︷︷ ︸
=E[x]

+b
∑
x∈X

P (x)︸ ︷︷ ︸
=1

= aE[x] + b
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Variance

Variance
The variance V of x is defined as

V[x] = E[(x− E[x])2] = E[x2]− E[x]2︸ ︷︷ ︸
in the werkcollege

.

It measures the average squared distance of x from E[x], or squared spread.

e.g. The variance of the exponential distribution is [Hint: integrate by parts]

E[t2] =

∫ ∞
0

t2λe−λt dt =
[
−t2e−λt

]∞
0︸ ︷︷ ︸

=0

+

∫ ∞
0

2te−λt dt

=
2

λ

∫ ∞
0

tλe−λt dt =
2

λ
E[t] =

2

λ

1

λ
=

2

λ2

V[t] = E[t2]− E[t]2 =
2

λ2
− 1

λ2
=

1

λ2
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Variance

Variance
A useful identity to know is

V[ax+ b] = a2V[x]

because

V[ax+ b] = E[((ax+ b)− E[ax+ b])
2
]

= E[(ax+ b− aE[x]− b)2]

= E[(ax− aE[x])2]

= E[a2(x− E[x])2]

= a2E[(x− E[x])2]

= a2V[x]

Notice how the variance is invariant under shifts of x. Notice also that we get a2,
because the variance measures the average squared spread of p(x).
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Standard deviation

Variance measures the squared spread or width of a distribution.

Standard deviation
The standard deviation σ is defined as the square root of the variance. It is a
measure of how spread out probability distribution p it about its mean.

σ2 = V[x].

A nice consequence of using the standard deviation is that it scales linearly with a√
V[ax+ b] =

√
a2V[x] = aσ

e.g. The standard deviation of the exponential distribution is 1
λ , which coinci-

dentally is also its mean.
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Moments

Moments
The nth moment of a distribution about c is defined as

µn = E[(x− c)n]

Examples: mean typically just written µ (µ = µ1 = E[x]), power (µ2 = E[x2]). If
c is not given, then we just assume c = 0.

Central Moments
If we set c = µ, then we have a central moment σn.

σn = E[(x− µ)n]

Example: variance (σ2 = σ2 = E[(x− µ)2])

Normalised Moments
The nth-normalised moment of a distribution is defined as

µn
σn

= E
[(

x− µ
σ

)n]
where σ is the standard deviation. Examples: skewness (n = 3), kurtosis (n = 4),
hyperskewness (n = 5), hyperflatness (n = 6)
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nth-moments of the Exponential Distribution

e.g. Find the nth moment of the exponential p(x;λ) = λe−λxI[x ≥ 0].

Integrating by parts

µn =

∫ ∞
0

tnλe−λt dt =
[
−tne−λt

]∞
0︸ ︷︷ ︸

=0

+

∫ ∞
0

ntn−1e−λt dt

=
n

λ

∫ ∞
0

tn−1λe−λt dt =
n

λ
µn−1

Since we have the recurrence relation µn = n
λµn−1 and we know that µ1 = 1

λ

µn =
n

λ

n− 1

λ
· · · 2

λ

1

λ
=
n!

λn
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Sample expectations

We derived the mean value operator from the sample mean. We then defined
expectations, variances, and the standard deviation for distributions. Given a set
of samples D = {x1, x2, .., xN}, can we reasonably guess these quantities?

We might guess something that looks right like:

µ̂ =
1

N

N∑
i=1

xi, σ̂2 =
1

N

N∑
i=1

(xi − µ̂)2.

Quantities such as µ̂ and σ̂2 are called estimators. In the next section, we
consider what makes a good estimator.
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Common distributions

III: Common distributions
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Bernoulli distributions

The simplest distribution is the Bernoulli
distribution

x ∼ Ber(x; p), where 0 ≤ p ≤ 1.

X is a binary random variable, with
P (X = 1) = p, P (X = 0) = 1− p. This is
sometimes written more compactly

P (x) = px(1− p)1−x
0 1

x
0.0

0.2

0.4

0.6

0.8

1.0

p(
x)

=
px (1

p)
1

x

Note p has two different meanings!! It is both a probability and parameter.

e.g. In a model of telecommunications model, x may be the random variable
indicating whether a message is corrupted or not. x ∼ Ber(x; p) would be used
to define the probability p that a message gets corrupted.
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Bernoulli distribution

The mean of the Bernoulli is

µ = E[x] =
∑
x

xP (x) = 0 · (1− p) + 1 · p = p

The variance of the Bernoulli is

σ2 = E[x2]− E[x]2

=
∑
x

x2P (x)− p2

= 02 · (1− p) + 12 · p− p2

= p− p2 = p(1− p)

The variance is maximal when p = 1/2, with
σ2 = 1/4. What is the standard deviation?

0.0 0.2 0.4 0.6 0.8 1.0
p

0.00

0.05

0.10

0.15

0.20

0.25

2
=

p(
1

p)
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Uniform distribution

The simplest continuous distribution is the
Uniform distribution

x ∼ Uniform(x; a, b) a < b

This density is flat on the interval [a, b]

Uniform(x; a, b) =
1

b− a︸ ︷︷ ︸
normalizer

I[x ∈ [a, b]]

You can work out the mean and variance

E[x] =
1

2
(a+ b)

V[x] =
1

12
(b− a)2

The CDF of the uniform density is a ramp.
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Gaussian distribution

The distribution you are most likely to encounter
is the Normal or Gaussian distribution

x ∼ N (x;µ, σ2) =
1√

2πσ2︸ ︷︷ ︸
normalizer

exp

{
− (x− µ)2

2σ2

}
.

Commit this to memory!

It has 2 parameters, µ and σ2. µ controls the location of the mode along the x
axis and σ2 controls the scale of the distribution.

The Gaussian ccurs very often in nature due to the Central Limit Theorem (next
week) and has some nice properties, which make it very easy to work with.
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Gaussian distribution

Let’s dissect the Gaussian. In essence, it is just an exponentiated quadratic.

1√
2πσ2

exp

{
− (x− µ)2

2σ2

}
The location parameter µ controls the centre of the Gaussian.
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Gaussian distribution

1√
2πσ2

exp

{
− (x− µ)2

2σ2

}
The scale parameter σ controls the “width” of the Gaussian.
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The exponential is needed to map the quadratics, which contain negative values,
to positive numbers. The 1√

2πσ2
term then normalises the result.
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Standard Gaussian distribution

A special case of the Gaussian is the standard Gaussian. It has a location
parameter µ = 0 and squared scale σ2 = 1, so

N (x; 0, 12) =
1√
2π

exp

{
−x

2

2

}
.

A useful identity is the derivative of this

∂

∂x

1√
2π

exp

{
−x

2

2

}
= −x · 1√

2π
exp

{
−x

2

2

}
.

This makes the mean easy to compute∫ ∞
−∞

x · 1√
2π

exp

{
−x

2

2

}
=

[
− 1√

2π
exp

{
−x

2

2

}]∞
−∞

= 0.

Dr Daniel Worrall (UvA) BSML 2 September 4, 2019 32 / 49



Standard Gaussian distribution

We solve for the variance, by integrating by parts

V[x] =

∫ ∞
−∞

x2 · 1√
2π

exp

{
−x

2

2

}
dx

choosing

f(x) = x =⇒ f ′(x) = 1

g′(x) = x · 1√
2π

exp

{
−x

2

2

}
=⇒ g(x) = − 1√

2π
exp

{
−x

2

2

}
we get

V[x] =

[
−x 1√

2π
exp

{
−x

2

2

}]∞
−∞︸ ︷︷ ︸

=0

+

∫ ∞
−∞

1√
2π

exp

{
−x

2

2

}
dx︸ ︷︷ ︸

=
∫
p(x) dx

= 1
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Gaussian distribution

Using the substitution y = x−µ
σ , we can find the mean and variance of

N (x;µ, σ2) (note x = σy + µ and dx/σ = dy):

E[x] =

∫
x · 1

σ
√

2π
exp

{
− (x− µ)2

2σ2

}
dx

= µ+ σ

∫
y · 1√

2π
exp

{
−y

2

2

}
dy︸ ︷︷ ︸

=0 (standard normal)

= µ

V[x] =

∫
(x− µ)2 · 1

σ
√

2π
exp

{
− (x− µ)2

2σ2

}
dx

= σ2

∫
y2 · 1√

2π
exp

{
−y

2

2

}
dy︸ ︷︷ ︸

=1 (standard normal)

= σ2

The symbols for location (µ) and squared scale (σ2) were a hint, but now you
know how to show these are equal to the mean and variance.
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Gaussian kurtosis

e.g. Find the kurtosis of the Gaussian

σ4 =

∫ ∞
−∞

(
x− µ
σ

)4
1

σ
√

2π
exp

{
− (x− µ)2

2σ2

}
dx

=

∫ ∞
−∞

y4 1√
2π

exp

{
−y

2

2

}
dy

=

∫ ∞
−∞
−y3 ·

(
−y 1√

2π
exp

{
−y

2

2

})
dy

=

[
−y3 1√

2π
exp

{
−y

2

2

}]∞
−∞︸ ︷︷ ︸

=0

+

∫ ∞
−∞

3y2 1√
2π

exp

{
−y

2

2

}
dy

= 3

∫ ∞
−∞

y2 1√
2π

exp

{
−y

2

2

}
dy = 3

Sometimes people define kurtosis against the Gaussian, defining excess kurtosis as
κ = σ4 − 3. So a positive excess kurtosis indicates heavy tails of the density and a
negative excess kurtosis, the contrary.
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Modelling assumptions

e.g. Ashmina is a dietitician. She studies the attention span of a population
of school children depending on whether they are given a free nutritional school
breakfast or not. The random variable for attention span is t minutes.

She chooses to model t using two Gaussian distributions, one for children given
a free nutritional breakfast N (t;µ1, σ

2
1), and one for the children who do not

receive this breakfast N (t;µ2, σ
2
2).

Is this a good model? What conditions should be met for a Gaussian distribution
to be a good model?
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Other distributions

There are many other distributions, which we shall introduce as we encounter
them

e.g.

Exponential 1
Z e
−λx Z = 1

λ

Gamma 1
Zx

α−1e−βx Z = Γ(α)
βα

Beta 1
Zx

α−1(1− x)β−1 Z = Γ(α)Γ(β)
Γ(α+β)

Dirichlet 1
Z

∏K
i=1 x

α−1
i Z =

∏K
i=1 Γ(αi)

Γ(
∑K
i=1 αi)

Student’s t 1
Z

(
1 + x2

ν

)− ν+1
2

Z =
√
νπΓ( ν2 )

Γ( ν+1
2 )
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Statistical modelling

IV: Estimators

Adapted from slides by Dr Herke van Hoof
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What is estimation?

We have been looking a bit at this:

p(x)
sampling

−−−−−−−−−→ {x1, x2, ..., xN}

p(x)
expectation

−−−−−−−−−→ {µ, σ2, ...}

Now we turn our attention to this:

{x1, x2, ..., xN}
estimation

−−−−−−−−−→ {µ, σ2, ...}
simple

−−−−−−−−−→ p(x)

Adapted from slides by Dr Herke van Hoof
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What is estimation?

We begin with data D = {x1, x2, . . . , xN}, and x ∼ p(x). If θ is a property of
p(x), what is θ?

We will invent (deterministic) functions f : D → Θ, with the desired property

f(D) = θ̂ ' θ

estimand value we are trying to guess (θ)

estimator (deterministic) rule to map the dataset to an estimate (f)

estimate result of applying the rule to the dataset (θ̂)

We may have different ways to estimate θ, and we want to compare them.

Adapted from slides by Dr Herke van Hoof
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What is estimation?

e.g. We have D = {x1, x2, . . . , xN}, and we know x ∼ N (x;µ, 12), with
unknown location parameter µ. Some estimators of µ are:

f(D) = x (the sample mean)

f(D) = x̃ (the sample median)

f(D) = max(D)−min(D)
2

f(D) = x1 (simply the first point of the sample)

f(D) = max(D)

f(D) =
1+

∑N
i=1 xi
N

Some estimators are good, and some are bad. Which of these estimators do you
think are reasonable?

Adapted from slides by Dr Herke van Hoof
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Properties of estimators

How do we know that the estimator f is appropriate? Here are some properties
we would like

First property: Consistency
For a dataset of size N , denote the estimate as θ̂N . Then if we can show that

lim
N→∞

θ̂N = θ.

then our estimator is called consistent.

Adapted from slides by Dr Herke van Hoof
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Properties of estimators

Second property: Bias
The bias of an estimator is the amount it systematically over/undershoots:

bias = ED
[
θ̂ − θ

]
The aim of the game is to find an unbiased estimator i.e. bias = 0. In the
homework you will show sample variance is a biased estimator and fix this.

e.g. Sample mean is an unbiased estimator of the Gaussian location parameter

E[µ̂] = E

[
1

N

N∑
i=1

xi

]
=

1

N
E [(x1 + x2 + ...+ xn)]

=
1

N
[E[x1] + E[x2] + ...+ E[xN ]] =

1

N
[E[x] + E[x] + ..+ E[x]]︸ ︷︷ ︸

n times

= E[x]
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Properties of estimators

Third property: Variance
Unbiasedness only measures if errors tend to “average
out”, it does not tell us how large the errors are. We
prefer small errors.

We can use variance to measure average error size:

VD[θ̂] = ED
[
(θ̂ − ED[θ̂])2

]
(S. Tossato, Fitted Q

iteration, 2017)

Arguably, the most important law in ML is the bias-variance tradeoff. It states
that bias and variance are always in a contest. Minimizing one, raises the other.
You cannot have your cake an eat it.
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Properties of estimators

e.g. Example estimators of the Gaussian location parameter µ:

estimator consistent? unbiased? variance?
f(D) = x (the sample mean) 3 3 low
f(D) = x̃ (the sample median) 3 3 low

f(D) = max(D)−min(D)
2 3 3 high

f(D) = x1 7 3 even higher
f(D) = max(D) 7 7 high

f(D) =
1+

∑N
i=1 xi
N 3 7 low

The biased and inconsistent estimators here are quite silly. In other problems,
reasonable estimators can be biased. You’ll investigate in the homework.

In the 2nd half of the course, you will see how to obtain reasonable estimators for
many distributions.
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What you should know

What is a random variable?

The definition of a distribution’s mean and variance, and how to compute it?

What is a sample mean and variance?

What are some common distributions and what are their parameters?

How can we answer simple questions with parametric distributions?

What is an estimate and what is an estimator?

What are some important properties of estimators?*
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Integration by substitution reminder*

Say we have an integral of the form∫
f(g(x))g′(x) dx

which is difficult but we know
∫
f(y) dy

is easier. We can substitute a new
variable y = g(x) so that

f(g(x)) = f(y) dy = g′(x)dx.

Plugging this back into the integrand we
get ∫

f(g(x))g′(x) dx =

∫
f(y) dy

e.g. ∫ ∞
0

x · λe−λx dx

Substitute y = λx, so

x · λe−λx = ye−y

dx =
1

λ
dy

Thus∫ ∞
0

x · λe−λx dx =
1

λ

∫ ∞
0

y · λe−ydy︸ ︷︷ ︸
=1

Dr Daniel Worrall (UvA) BSML 2 September 4, 2019 47 / 49



Integration by parts reminder*

Notice that from the product rule (of calculus)

d

dx
(f(x)g(x)) = f ′(x)g(x) + f(x)g′(x)∫ b

a

d

dx
(f(x)g(x)) dx︸ ︷︷ ︸

A©

=

∫ b

a

f ′(x)g(x)dx︸ ︷︷ ︸
B©

+

∫ b

a

f(x)g′(x)dx︸ ︷︷ ︸
C©

=⇒
∫ b

a

f(x)g′(x)dx︸ ︷︷ ︸
C©

= [f(x)g(x)]
b
a︸ ︷︷ ︸

A©

−
∫ b

a

f ′(x)g(x)dx︸ ︷︷ ︸
B©

So we can solve integrals of the form∫ b

a

f(x)g′(x) dx
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Integration by parts reminder*

∫ b

a

f(x)g′(x)dx = [f(x)g(x)]
b
a −

∫ b

a

f ′(x)g(x)dx

e.g.

Solve

∫ ∞
0

tλe−λt dt

f(x) = t g′(x) = λe−λt

f ′(x) = 1 g(x) = −e−λt

∫ ∞
0

tλe−λt dt =
[
−te−λt

]∞
0︸ ︷︷ ︸

=0

+

∫ ∞
0

e−λt dt =

[
− 1

λ
e−λt

]∞
0

=
1

λ
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