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What is estimation?

Last week we considered sampling, estimation, and expectations.

p(x)
expectation

−−−−−−−−−→ {µ, σ2, ...}

sampling

y x limn→∞

{x1, x2, ..., xN}
estimation

−−−−−−−−−→ {µ̂, σ̂2, ...}

This week we consider we consider an easier way to compute expectation, multiple
random variables, and transformations of random variables.
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Sums of random variables

I: Sums of random variables
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Moment Generating Functions

Moment Generating Functions
Computing moments is bothersome. The moment generating function (MGF)1, is
an elegant method to find moments with somewhat less bother.

The MGF Mx(t) is defined as

Mx(t) = E
[
etx
]

∀t where Mx(t) ≥ 0

Now look at the nth derivative at t = 0:

dn

dtn
Mx(t)

∣∣∣∣
t=0

=
dn

dtn
E
[
etx
]∣∣∣∣
t=0

= E
[

dn

dtn
etx
]∣∣∣∣
t=0

= E
[
xnetx

]∣∣
t=0

= E [xn]

The nth derivative is exactly the nth moment!

1The MGF has a more sophisticated cousin, the characteristic function, prefered in practice.
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Moment Generating Functions

e.g. What is the MGF of the uniform
distribution between a and b?

Mx(t) = E
[
etx
]

=

∫ ∞
−∞

etx
I[x ∈ [a, b]]

b− a
dx

=
1

b− a

∫ b

a

etx dx

=

[
etx

t(b− a)

]b
a

=
etb − eta

t(b− a)
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Moment Generating Functions

e.g. The MGF of the Gaussian is Mx(t) = eµt+
1
2σ

2t2 . What is its mean?

d

dt
Mx(t)

∣∣∣∣
t=0

= (µ+ σ2t)eµt+
1
2σ

2t2
∣∣∣
t=0

= µ
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Moment Generating Functions

e.g. The Gamma distribution and its MGF are

p(x; k, θ) =
1

Γ(k)θk
xk−1e−

x
θ I[x ≥ 0], Mx(t) = (1− θt)−kI

[
t < θ−1

]
What is the nth moment of the Gamma distribution?

d

dt
(1− θt)−k = −k(1− θt)−(k+1) · (−θ)

d2

dt2
(1− θt)−k = +k(k + 1)(1− θt)−(k+2) · (−θ)2

=⇒ dn

dtn
(1− θt)−k = (1− θt)−(k+n) · θn

n−1∏
i=0

(k + i)

=⇒ E[xn] = θn
n−1∏
i=0

(k + i)
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Moment Generating Functions
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Moment Generating Functions: Properties

Properties

What is Mx(0)?

Mx(0) = E[x0] = E[1] = 1

Matched MGFs implies matched CDFs, thus matched distributions

Mx(t) = My(t) ⇐⇒ Fx(x) = Fy(y)

Scaling y = ax

My(t) = Mx(at)
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Moment Generating Functions: Properties

Sums of independent random variables. If z = x+ y then Mz(t) = Mx(t)My(t)

Mz(t) = Ez[etz] = Ex
[
Ey[et(x+y)]

]
= Ex

[
Ey[etx+ty]

]
= Ex

[
Ey[etxety]

]
= Ex[etx]Ey[ety] = Mx(t)My(t)

So if z =
∑N
n=1 xi then

Mz(t) = Mx1
(t)Mx2

(t) · · ·MxN (t) =

N∏
n=1

Mx(t)

And the mean of z is thus

d

dt
Mz(t)

∣∣∣∣
t=0

=
d

dt
Mx1

(t)Mx2
(t) · · ·MxN (t)

∣∣∣∣
t=0

= M ′x1
(t)Mx2(t) · · ·MxN (t) +Mx1(t)M ′x2

(t) · · ·MxN (t)...
∣∣
t=0

= M ′x1
(0) +M ′x2

(t) + ...+M ′xN (0)

=

N∑
n=1

E[xi]
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Moments of summed random variables

It is not too difficult to see that

E

[
N∑
i=1

xn

]
=

N∑
i=1

Exn [xn]

for independent random variables.

The well known Bienaymé formula2 is a little trickier to show

V

[
N∑
i=1

xn

]
=

N∑
i=1

Vxn [xn]

for independent random variables.

2Discovered in 1853
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Sums of random variables

e.g. What is the variance of the mean estimator 1
N

∑N
i=1 xi for large N , if

E[x] = 0 and V[x] = σ?

The variance of the sums of iid RVs is the sum of their variances. So

V

[
N∑
i=1

xi

]
Bienaymé

=

N∑
i=1

V[xi]
iid
=

N∑
i=1

V[x] = Nσ2

V

[
1

N

N∑
i=1

xi

]
=

1

N2
Nσ2 =

1

N
σ2

Notice that as N →∞ the variance goes to zero.

Dr Daniel Worrall (UvA) BSML 3 September 13, 2019 12 / 38



Transforming random variables

II: Transforming random variables
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Statistical independence

If the random variable X is statistically independent of Y then we saw last week
that

p(x, y) = p(x|y)p(y) = p(x)p(y).

For N variables X1, X2, ..., XN , this would become

p(x1, ..., xN ) = p(x1)p(x2) · · · p(xN ) =

N∏
i=1

p(xi)

We call such a joint, factorizable.
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Bivariate Gaussian

Let’s say x and y are iid RVs from standard Gaussians, so

x ∼ 1√
2π

exp

{
−x

2

2

}
y ∼ 1√

2π
exp

{
−y

2

2

}
Their joint probability is written

p(x, y) = p(x)p(y)

=
1√
2π

exp

{
−x

2

2

}
· 1√

2π
exp

{
−y

2

2

}
=

1

2π
exp

{
−x

2 + y2

2

}
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Bivariate Gaussian

The level sets of this distribution are circles since if

1

2π
exp

{
−x

2 + y2

2

}
= const =⇒ x2 + y2 = const
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Transformation of random variables

e.g. Arrows are shot at a target. If the x-position and y-position of the arrows
are distributed about the centre with zero mean and variance σ2, what is the
distribution of radii from the centre?

p(x, y) = p(x)p(y) = N (x|0, σ2)N (y|0, σ2) =
1

2πσ2
exp

{
−x

2 + y2

2σ2

}
In polar coordinates

x = r cos θ y = r sin θ p(r, θ) =
1

2πσ2
exp

{
−r2

2σ2

}
dxdy = rdrdθ

So

P (R < r) =

∫ r

0

∫ θ=π

θ=−π
p(r′, θ)r′dθdr′ =

∫ r

0

∫ θ=π

θ=−π

1

2πσ2
exp

{
−r′2

2σ2

}
r′dθdr′

=

∫ r

0

��2π · r′

��2πσ2
exp

{
−r′2

2σ2

}
dr =

[
− exp

{
−r2

2σ2

}
dr

]r
0

= 1− exp

{
−r2

2σ2

}
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Transformation of random variables

Given P (R < r) = 1− exp
{
−r2
2σ2

}
, we

can figure out the PDF using

p(r) =
d

dr
P (R < r)

=
d

dr

(
1− exp

{
−r2

2σ2

})
=

r

σ2
exp

{
−r2

2σ2

}

The radial PDF is Rayleigh distributed . 4 2 0 2 4
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Transformation of random variables

In general, if x ∼ p(x) and we are given x = f(y), what is p(y)?

We know that probability of x in some region X should equal probability of y in
the transformed region X = f(Y).∫

X
pX(x) dx =

∫
Y
pY (y) dy

So if we shrink the region on integration to an infinitesimal slither

|pX(x)dx| = |pY (y)dy| =⇒ pY (y) = pX(x)

∣∣∣∣dxdy

∣∣∣∣
This only works for f invertible!

Useful in e.g. random number generation, computer simulations, Monte Carlo
integrals, generating images (GLOW by Durk Kingma)
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Transformation of random variables

e.g. Find the distribution of y = ax+ b if p(x) = N (x|µ, σ2).

p(y) = p(x)

∣∣∣∣dxdy

∣∣∣∣
=

1

σ
√

2π
exp

{
− (x− µ)2

2σ2

}
d

dy

y − b
a

=
1

aσ
√

2π
exp

{
−

(y−ba − µ)2

2σ2

}

=
1

aσ
√

2π
exp

{
− (y − b− aµ)2

2a2σ2

}
= N (y|aµ+ b, a2σ2)

This matches what we know that E[ax+ b] = aE[x] + b and V[ax+ b] = a2V[x].
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Transformation of random variables

e.g.
Find the distribution of x = −y where
x ∼ I[x ∈ [0, 1]].

pY (y) = pX(x)

∣∣∣∣dxdy

∣∣∣∣
= pX(x)

∣∣∣∣ d

dy
(−y)

∣∣∣∣
= pX(−y) |−1|
= I[−y ∈ [0, 1]]

= I[y ∈ [−1, 0]]
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Transformation of random variables

e.g.
Find the distribution of x = e−y where
x ∼ I[x ∈ [0, 1]].

p(y) = p(x)

∣∣∣∣dxdy

∣∣∣∣
= p(x)

∣∣∣∣ d

dy
e−y
∣∣∣∣

= p(x)
∣∣−e−y∣∣

= p(x)︸︷︷︸
=1

e−y

= Exp(y; 1)
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Transformation of random variables

What if we now have the opposite process? I give you p(x) and p(y) and you have
to tell me x = f(y)? Recall∫

X
pX(x) dx =

∫
Y
pY (y) dy

Let’s choose the regions of integration such that
∫
X pX(x) dx is a CDF

FX(x) = FY (y).

The transformation is now

x = F−1X (FY (y)) .
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Transformation of random variables

e.g. If p(y) = I(y ∈ [0, 1]) and p(x) = 1
2 I[x ∈ [0, 2]], what is x = f(y)?

Matching the CDFs

FX(x) = FY (y)

∫ x

−∞

1

2
I[x′ ∈ [0, 2]] dx′ =

∫ y

−∞
I(y ∈ [0, 1])dy′∫ x

0

1

2
dx′ =

∫ y

0

dy′

x

2
= y

x = 2y
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Transformation of random variables

e.g. If p(y) = I(y ∈ [0, 1]) and p(x) = x
σ2 e
− x2

2σ2 , what is x = f(y)?

Matching the CDFs

FX(x) = FY (y)

∫ x

0

x′

σ2
e−

x
′2

2σ2 dx′ =

∫ y

0

dy′

1− e−
x2

2σ2 = y

− x2

2σ2
= ln(1− y)

x2 = −2σ2 ln(1− y)

x =
√
−2σ2 ln(1− y)
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Transformation between Uniform and Rayleigh

σ = 1
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Transformation of random variables

If p(x) is a zero mean Gaussian of width σ and y is uniform, what is y = f(x)?

FX(x) = FY (y) =⇒ y =

∫ x

−∞
N (x′|0, σ2) dx′ = Φ(x)

so

x = Φ−1(y)

This requires that we have access to the inverse of the CDF of the Gaussian. As
we know, this is intractable, but we can use good numerical approximations.

This is the typical way to generate Gaussian random numbers on your computer.
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Transformation between Uniform and Gaussian

σ = 0.25
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Transformation of random variables

e.g. The Gompertz distribution is p(x) = bηeη+bx−ηe
bx

, for b, η > 0, x ≥ 0 with

F (x) = 1− e−η(e
bx−1).

If p(y) = I[y ∈ [0, 1]], what f satisfies x = f(y)?

F (x) = F (y)

1− e−η(e
bx−1) = y

−η(ebx − 1) = log(1− y)

ebx = 1− 1

η
log(1− y)

x =
1

b
log

(
1− 1

η
log(1− y)

)
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Transformation between Uniform and Gompertz

η = 0.1, b = 1
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Sums of random variables

III: Miscellanea
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Statistical Independence

When we have a collection of n Bernoulli trials? How do we model that? Say I
have n identical coins and I flip each one once. The outcome {head, tail} of
each coin is independent of every other. We formalise this scenario with the
concept of independent and identically distributed or iid .

Statistical Independence The joint probability of n statistically independent
outcomes is the product of their marginals

p(x1, x2, ..., xn) = p(x1)p(x2)...p(xn) =

n∏
i=1

p(xi)

e.g. A pharmacologist is developing a new strain of antibiotics on the superbug
MRSA. She prepares 25 petri dishes with bacteria and drops a little of the new
antibiotics on each. X ∼ Ber(0.99) is the RV whether the antibiotics kills the
bacteria in a dish. The probability the bacteria is killed in every dish is

25∏
i=1

0.99 = 0.99 · 0.99 · ... · 0.99︸ ︷︷ ︸
25 times

= 0.9925 = 0.7778 (4 s.f.)
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Combinatorics

What if we had asked the question “What is the probability that in exactly one
dish the bacteria is not killed”? Let’s write X = X1X2X3... and denote success as
1 and failure as 0 then

P (X = 01111...) = 0.01 · 0.99 · 0.99 · 0.99 · 0.99... = 0.01 · 0.9924

P (X = 10111...) = 0.99 · 0.01 · 0.99 · 0.99 · 0.99... = 0.01 · 0.9924

P (X = 11011...) = 0.99 · 0.99 · 0.01 · 0.99 · 0.99... = 0.01 · 0.9924

P (X = 11101...) = 0.99 · 0.99 · 0.99 · 0.01 · 0.99... = 0.01 · 0.9924

P (X = 11110...) = 0.99 · 0.99 · 0.99 · 0.99 · 0.01... = 0.01 · 0.9924

...

If K =
∑n
i=1Xi, then

P (K = 24) = 0.01 · 0.9924 + 0.01 · 0.9924 + ...+ 0.01 · 0.9924︸ ︷︷ ︸
25 times

= 25 · 0.01 · 0.990.24 = 0.1964 (4 s.f.)
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Combinatorics

What is P (K = 23)?

There are 25 ways for the first dish to fail, and 24 ways for the second dish to fail,
so there are 25 · 24 ways to choose two failed dishes. BUT order does not matter
so we have 25 · 24/2 ways.

The binomial coefficient

nCk =
n!

k!(n− k)!

where the ! symbol is called a factorial, meaning n! = n · (n− 1) · (n− 2) · ... · 2 · 1.

The factorial is ridiculously fast growing function
1!=1, 2!=2, 3!=6, 4!=24, 5!=120
6!=720, 7!=5040, 8!=40320, 9!=362880, 10!=3628800

By the way, we define 0! = 1.
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Binomial distribution

The Binomial distribution describes the number
of successes k out of n independent and
identically distributed Bernoulli trials of
probability p

k ∼ Bin(k;n, p),

where n = 1, 2, 3, ..., and 0 ≤ p ≤ 1. We have

P (k) = nCkp
k(1− p)n−k
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Binomial distribution

e.g. This has mean

E[k] =

n∑
k=0

kBin(k;n, p) =

n∑
k=0

k
n!

k!(n− k)!
pk(1− p)n−k

=

n∑
k=1

n!

(k − 1)!(n− k)!
pk(1− p)n−k

= np

n∑
k=1

(n− 1)!

(k − 1)!(n− k)!
pk−1(1− p)n−k

= np

n′∑
k′=0

n′!

k′!(n′ − k′)!
pk

′
(1− p)n

′−k′ = np.

Well that was fiddly! Next we consider a simpler way to compute the mean of
such a distribution.
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Sum of random variables

n is the number of uniform random variables in the sum
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Do you notice something about this?

The distributions start to look like Gaussians with our already-known fact

µ =
N∑
i=1

µi, σ2 =
N∑
i=1

σ2
i .
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The Central Limit Theorem

If Xi are iid RVs with shared mean 0 and variance σ2, then the quantity

SN =
1√
N

N∑
i=1

xi

is Gaussian distributed3 in the limit of N →∞ i.e.

lim
N→∞

SN ∼ N (·|0, σ2).

The proof is beyond the scope of this course.

Why did we divide by
√
N and not N? Hint: Think about the variance x√

N
.

3Note this only applies to random variables which have finite moments (which is most of
them). An example of a distribution with undefined moments is the Cauchy distribution
p(x) = (π(x2 + 1))−1. It has infinite mean and variance! The sum of two Cauchy random
variables is itself Cauchy distributed.
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