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Probability and Statistics

We are mostly concerned with models which look like

p(x|θ).

In many case x refers to an observation and θ refers to a set of parameters.

Probability

θyp(x|θ)

{x1, x2, ...}

Statistics

{x1, x2, ...}yp(x|θ)orp(θ|x)

θ

Machine Learning

{x1, x2, ...}yp(x|θ)orp(θ|x)

θyp(x∗|θ)

{x∗}
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Machine learning

In machine learning, we use past data to make predictions about the future.
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Bayesian Inference

I: Bayesian Inference
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Bayesian Inference

We previously learnt about maximum likelihood,
where we solved

θML = arg max
θ∈Θ

p(D|θ).

Is this the best we can do?

It is almost certainly wrong
P (θML = θtrue) = 0.

In reality D � p(D|θ) but D ∼ ptrue(D).
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Why do we want θML anyway?

Options

1 We are actually interested in knowing θ

2 We don’t care: actually want to generate samples {x(1)
∗ , x

(2)
∗ , ..} from the

data generating distribution ptrue(x).
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Posterior distributions

All we need is the posterior distribution

p(θ|D)

Read, “the probability of the parameters, given the data”.

This is way more descriptive than a single point estimate θML. It is a probability
distribution over the entire space of θ, telling us how much each one explains the
data.
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Posterior distributions

We compute the posterior using Bayes’ theorem

p(θ|D) =
p(D|θ)p(θ)

p(D)
.

These terms each have names:

posterior =
likelihood× prior

evidence
.

Later on we shall dissect this equation in agonising detail, but for now, let’s just
use it and get a feel for how it works.

NOTE: the evidence also goes by the name of marginal likelihood .
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Two TAs

e.g. Two TAs are marking exams. If x denotes the marks awarded by a TA, the
distributions of the two markers is

p(x|TAA) = N (x; 30, 102)

p(x|TAB) = N (x; 20, 52).

You flunk your course receiving x = 10 marks. Unethically, you wish to seek out
who marked your exam paper. Find the posterior probability that TAA marked
your manuscipt, assuming you initially expect TAA marked your paper with
probability π = 0.5.

p(TAA|D = {10}) =
p(D|TAA)p(TAA)

p(D)
=

p(D|TAA)p(TAA)∑
i∈{A,B} p(D|TAi)p(TAi)
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Two TAs
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Two TAs

p(TAA|D = {10}, π) =
p(D|TAA)p(TAA)

p(D|TAA)p(TAA) + p(D|TAB)p(TAB)

=
N (10; 30, 102)π

N (10; 30, 102)π +N (10; 20, 52)(1− π)

=
π

π + N (10;20,52)
N (10;30,102) (1− π)

N (10; 20, 52)

N (10; 30, 102)
=

1
5
√

2π
exp{− (10−20)2

2·52 }
1

10
√

2π
exp{− (10−30)2

2·102 }
=

10e−2

5e−2
= 2

p(TAA|D = {10}, π) =
π

π + 2(1− π)

If π = 0.5 then p(TAA|D = {10}, π = 0.5) = 1
3 .
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Two TAs

Say you get a tip off that TAA marked 80% of the manuscripts. What now is your
posterior belief that TAA marked your paper?

Easy peasy lemon squeezy. We just set the prior to

p(TAA) = π = 0.8

So

p(TAA|D = {10}, π = 0.8) =
0.8

0.8 + 2(1− 0.8)
=

2

3
.

The Bayesian framework allows us to incorporate prior knowledge into our
inferences. How would we achieve this in the maximum likelihood setting?
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The Bent Coin

e.g. This is the original inference problem studied by Thomas Bayes in 1763.

You are given a bent coin. You flip it N times. It lands heads H times. If we
denote the probability of the coin landing heads as π, what is the ML solution
and the posterior distribution p(π|D)?

ML solution If heads is 1, we have p(x|π) = πx(1− π)1−x, so

L(π) =
N∑
i=1

xi log π + (1− xi) log(1− π)

= H log π + (N −H) log(1− π)

which has a maximum at

πML =
H

N
.
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The Bent Coin cont’d

Bayesian solution Always start with Bayes’ Theorem

p(π|D) =
p(D|π)p(π)

p(D)
=

[∏N
i=1 p(xi|π)

]
p(π)

p(D)

We need a prior, let’s pick p(π) = Uniform(π; 0, 1) = I[π ∈ [0, 1]] for now.

p(π|D) =

[∏N
i=1 π

xi(1− π)1−xi

]
I[π ∈ [0, 1]]

p(D)

=

[
πH(1− π)N−H

]
I[π ∈ [0, 1]]

p(D)

=
1

Z
πH(1− π)N−H
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The Bent Coin cont’d
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The Bent Coin cont’d

Notice how the posterior is ‘less temperamental’ than the likelihood function.

Next we need to figure out the marginal likelihood

Z = p(D) =

∫
p(D, π) dπ =

∫
p(D|π)︸ ︷︷ ︸
likelihood

p(π)︸︷︷︸
prior

dπ.

The marginal likelihood is an instance of the famous Beta integral1

p(D) =

∫ 1

0

πH(1− π)N−H dπ = B(H + 1, N −H + 1) =
H!(N −H)!

(N + 1)!

p(π|D) =
(N + 1)!

H!(N −H)!
πH(1− π)N−H

Don’t worry if this integral scares you. It frightens me too! Resources such as
Wolfram Alpha, Wikipedia, the Bishop book, and the MacKay book are handy.

1B(x, y) =
∫ 1
0 t

x−1(1 − t)y−1 dt
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The Bent Coin cont’d

The posteror has the form of a Beta distribution

Beta(π|α, β) =
1

Z(α, β)
πα−1(1− π)β−1, Z(α, β) =

Γ(α)Γ(β)

Γ(α+ β)

The Beta distribution is a probability distribution over probabilities.

The two parameters α and β control the shape of the distribution.

The Gamma function2 satisfies Γ(α) = (α− 1)! and Γ(α+ 1) = αΓ(α).

The mean of the distribution is E[π] = α
α+β .
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2Γ(α) :=
∫∞
0 xα−1e−x dx
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The Bent Coin cont’d

So, we see that the posterior distribution gets sharper and sharper as N increases.
In fact it becomes a Dirac delta peak in the limit of infinite data.

Its maximum is called the maximum a posteriori or MAP. In this example

πMAP =
H

N

which coincides with πML. This is not true in general.
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The Bent Coin cont’d

We can use the posterior to make predictions. We can compute the probability of
the next coin toss as p(x∗ = head|D). We can find this by expanding a marginal

p(x∗ = head|D) =

∫
p(x∗ = head, π|D) dπ =

∫
p(x∗ = head|π,�D)︸ ︷︷ ︸

forward likelihood

p(π|D)︸ ︷︷ ︸
posterior

dπ

=

∫ 1

0

π · π
H(1− π)N−H

p(D)
dπ = Eπ [Beta(π|H + 1, N −H + 1)] .

This is the mean of the Beta distribution, which is EπBeta(π|a, b) = a
a+b so

p(x∗ = head|D) =
H + 1

N + 2

which is called Laplace’s rule of succession.
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The Bent Coin cont’d

What just happened? We computed a quantity called the posterior predictive
distribution. It is

p(x∗|D)︸ ︷︷ ︸
posterior predictive

=

∫
Θ

p(x∗|θ)︸ ︷︷ ︸
forward likelihood

p(θ|D)︸ ︷︷ ︸
posterior

dθ

If we interpret p(x∗|θ) as a particular model of x∗ given the parameters θ, then
p(x∗|D) is a weighted average of all possible models, where the weights are
determined by the posterior i.e. the training data.
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The Bent Coin cont’d

Say someone had given us a sneaky hint beforehand that
the coin’s bias is about 0.7-0.8. We would choose a Beta
prior with this mean, say

p(π) = Beta(π|α = 12, β = 4)
0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

p(
)

Beta(12,4)

The posterior is

p(π|D) =

likelihood︷ ︸︸ ︷[
πH(1− π)N−H

]
·

prior︷ ︸︸ ︷
πα−1(1− π)β−1

p(D)
=
πH+α−1(1− π)N−H+β−1

Z(H + α,N −H + β)

But this is is just the Beta distribution, with different parameters!

p(π|D) = Beta(π;H + α,N −H + β).
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The Bent Coin cont’d

Bayesian solution
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The Bent Coin cont’d

Bayesian solution
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The Bent Coin cont’d

Bayesian solution
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The Bent Coin cont’d
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The Bent Coin cont’d
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The Bent Coin cont’d
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The Bent Coin cont’d
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The Bent Coin cont’d
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The Bent Coin cont’d
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The Bent Coin cont’d

p(π|D) =
πH+α−1(1− π)N−H+β−1

Z(H + α,N −H + β)

A couple of things to notice:

The posterior was a Beta distribution, just like the prior. This property is
called conjugacy . (More on this later)

The MAP (peak of the posterior) is at

πMAP =
H + α− 1

N + α+ β − 2
=

H
N + α−1

N

1 + α+β−2
N

=
πML + α−1

N

1 + α+β−2
N

If you now take the limit N →∞, limN→∞ πMAP = πML. So ML and MAP
match in the limit. Some would argue that maximum likelihood is a limit
case of Bayesian inference.

The parameters α and β acts like extra data! They are called pseudocounts,
with effective sample size α+ β.
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The Bent Coin cont’d

In general, the probability of the next toss is

p(x∗ = head|D, α, β) =
H + α+ 1

N + α+ β + 2
=
πML + α+1

N

1 + α+β+2
N

Compare this with the prediction from the maximum likelihood πML:

p(x∗ = head|πML) =
H

N

Or maximum a posteriori πMAP:

p(x∗ = head|πMAP) =
πML + α−1

N

1 + α+β−2
N

We have 3 different solutions, which should we prefer?

Dr Daniel Worrall (UvA) BSML 05 October 3, 2019 31 / 42



Conjugate priors

For a Bernoulli likelihood we can have a Beta prior and posterior. This property is
known as conjugacy .

Not all likelihoods admit conjugate priors: only distributions in the exponential
family . Here is a list of likelihoods and their conjugate priors

Distribution Parameter Prior
Gaussian Mean Gaussian
Gaussian Variance Inverse-Gamma
Bernoulli Mean Beta
Poisson Rate (λ) Gamma
Exponential Rate (λ) Gamma
Uniform Upper limit Pareto

We like distributions which admit a conjugate prior, because we can find the
posterior parameters very efficiently given simple statistics about the input data.
Furthermore the posterior distributions are tractable.
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Gaussian example

Consider a Gaussian likelihood over N datapoints. To make life easier, we shall
reparameterize using the precision λ = 1/σ2, this can be written

N∏
i=1

N (xi|µ, λ−1) =

N∏
i=1

λ√
2π

exp

{
−λ(xi − µ)2

2

}

=

(√
λ

2π

)N
exp

{
−λ

2

N∑
i=1

(xi − µ)2

}

Let’s compute the posterior distribution over the precision, given a conjugate
Gamma prior and fixed mean

p(λ|α, β) =
1

Z(α, β)
λα−1 exp {−βλ}
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Gaussian example

p(λ|α, β, µ, {xi}) ∝

[
N∏
i=1

N (xi|µ, λ−1)

]
p(λ|α, β)

=

(
λ

2π

)N
2

exp

{
−λ

2

N∑
i=1

(xi − µ)2

}
1

Z(α, β)
λα−1 exp {−βλ}

∝ λN
2 +α−1 exp

{
−λ

(
β +

1

2

N∑
i=1

(xi − µ)2

)}

This is a new Gamma distribution p(λ|α′, β′) with

α′ =
N

2
+ α β′ = β +

1

2

N∑
i=1

(xi − µ)2
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Gaussian example

Let’s look at the posterior predictive distribution.

p(x∗|α, β, µ, {xi}) =

∫
N (x∗|µ, λ−1)p(λ|α′, β′) dλ

This is in fact the definition of the Student-t
distribution. Note that the posterior predictive is
not generally the same form as the prior or the
forward likelihood.

Models of this form are called Gaussian scale
mixtures. They are useful in modelling because
they have significantly heavier tails than the
Gaussian distribution, which make them robust
to outliers.
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Categorical-Dirichlet example

The categorical distribution is the D-way generalization of the Bernoulli
distribution. It has the form

p(x|π) = πx1
1 πx2

2 · · ·π
xD

N =

D∏
d=1

πxd

d ,

D∑
d=1

πd = 1

where x is one-hot i.e. the dth entry is 1, the rest are 0. So p(xd|π) = πd. This is
typically used for modelling the distribution of words in sentences, where each
word is associated with a label xd.

The conjugate prior to the categorical is the Dirichlet distribution

p(π|α) = Dirichlet(π|α) =
1

Z(α)

D∏
d=1

παd−1
d .

The hyperparameter α controls the shape of the Dirichlet. Each element of α
must satisfy αd > 0
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Categorical-Dirichlet example

If for each category we get counts N = [N1, N2, ..., ND]>, where N =
∑D
d=1Nd,

the likelihood is

N∏
i=1

p(xi|π) =

N∏
i=1

(
D∏
d=1

πxd,i
d

)
=

D∏
d=1

πNd

d

The posterior distribution is then

p(π|{xi},α) ∝

[
D∏
d=1

πNd

d

]
1

Z(α)

D∏
d=1

παd−1
d ∝

D∏
d=1

πNd

d παd−1
d =

D∏
d=1

πNd+αd−1
d

which has the form of a Dirichlet distribution

p(π|{xi},α) = Dirichlet(π|N + α)
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Categorical-Dirichlet example

The posterior predictive is fiddly to work out. It is useful to know that the mean
of the dth dimension is αd/

∑D
d=1 αd

p(x∗,d|{xi},α) =

∫
∆

p(x∗,d|π)p(π|{xi},α) dπ

=

∫
∆

π∗,dDirichlet(π|N + α) dπ

= Eπd
[Dirichlet(π|N + α)]

=
Nd + αd∑D
d=1Nd + αd

We see the role of the prior is to add pseudocounts to shift the posterior
predictive estimates away from the maximum likelihood solution.
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Bayesian Inference Summary

We wanted to compute two quantities

1 The posterior distribution p(π|D)

Use Bayes’ theorem for p(π|D) = p(D|π)p(π)
p(D)

Write out the numerator p(D|π)p(π)
Isolate terms in π and match to the form of the prior
Optionally normalize by p(D), which is the marginal of the numerator
p(D) =

∫
p(D|π)p(π) dπ

2 The probability distribution of a test sample x∗
This is p(x∗|D)
We expand it as p(x∗|D) =

∫
p(x∗|π)p(π|D) dπ

This is called the posterior predictive distribution
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The Exponential Family*

Which distributions have analytical maximum likelihood solutions?

Most of the distributions we have looked at are fairly similar.

They have three main components:

p(x|θ) =
1

Z(θ)︸ ︷︷ ︸
normalizer

·
fnc of x︷︸︸︷
b(x) · exp

{
θ>t(x)

}︸ ︷︷ ︸
exp of linear fnc of θ

θ is called the natural parameters, and t(x) is called the sufficient statistics of the
distribution.
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Conjugate Exponential Priors*

A natural choice of prior for the exponential family is

p(θ|τ , ν) =
1

Z(τ , ν)︸ ︷︷ ︸
normalizer

·

not a normalizer︷ ︸︸ ︷(
1

Z(θ)

)ν
· exp

{
θ>τ

}

τ and ν are hyperparameters called the pseudo-observations and scale
respectively.
Conjugate exponential posterior Let’s start by looking at the likelihood

N∏
i=1

p(xi|θ) =

N∏
i=1

1

Z(θ)
b(x) exp

{
θ>t(x)

}
=

(
1

Z(θ)

)N [ N∏
i=1

b(xi)

]
exp

{
θ>

N∑
i=1

t(xi)

}
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Conjugate Exponential Priors*

So the posterior is

p(θ|{xi}, τ , ν) ∝
N∏
i=1

p(xi|θ)p(θ|τ , ν)

=

(
1

Z(θ)

)N [ N∏
i=1

b(xi)

]
exp

{
θ>

N∑
i=1

t(xi)

}
· 1

Z(τ , ν)

(
1

Z(θ)

)ν
exp

{
θ>τ

}
∝
(

1

Z(θ)

)N+ν

exp

{
θ>

(
τ +

N∑
i=1

t(xi)

)}

This is of the same form as the prior, so we know the normalizer is
Z(τ +

∑N
i=1 t(xi), ν +N), thus

p(θ|{xi}, τ , ν) =
Z(θ)−(N+ν)

Z(τ +
∑N
i=1 t(xi), ν +N)

exp

{
θ>

(
τ +

N∑
i=1

t(xi)

)}
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