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Probability and Statistics

We are mostly concerned with models which look like

p(x|θ).

In many case x refers to an observation and θ refers to a set of parameters.

Probability

θyp(x|θ)

{x1, x2, ...}

Statistics

{x1, x2, ...}yp(x|θ)orp(θ|x)

θ

Machine Learning

{x1, x2, ...}yp(x|θ)orp(θ|x)

θyp(x∗|θ)

{x∗}
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Machine learning

In machine learning, we use past data to make predictions about the future.
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Bayesian Model Comparison

I: Bayesian Model Comparison
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Model Comparison

Say I have some data D = {xi}, how do I pick a likelihood and a prior, aka
models? A sensible idea would be to pick a few different models {Mi}, and then
find the posterior distribution over the models given the data.

p(Mi|D) ∝ p(D|Mi)p(Mi)

We can think as each choice of likelihood as a single model from a model space or
hypothesis space M = {M1,M2, ...}.

Typically if we choose a uniform prior on models, so p(M1) = p(M2) = ...
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The Bayes’ Factor

Let’s consider a simple two-model comparison. To compare their probabilities we
could take their ratio:

P (M1|D)

P (M2|D)
=
p(D|M1)P (M1)/p(D)

p(D|M2)P (M2)/p(D)
=
p(D|M1)

p(D|M2)︸ ︷︷ ︸
Bayes’ factor

·
�

�
��P (M1)

P (M2)︸ ︷︷ ︸
typ. 1

This is called the Bayes’ factor

K =
p(D|M1)

p(D|M2)

If K � 1 then we prefer M1, if K � 1 then we prefer M2 otherwise both models
are fairly equal. Sometimes we also use the log Bayes factor because it is better
behaved

logK = log p(D|M1)− log p(D|M2)

We compare this against 0.
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Example

We have some data. We know it contains values in the interval [−1, 1], but we are
not sure about which probability distribution to use as a good model. We consider
a uniform model M1 and a semicircle distribution M2

p(x|M1) =
1

2
, −1 ≤ x ≤ 1

p(x|M2) =
2

π

√
1− x2, −1 ≤ x ≤ 1

So we have that

p(D|M1) =

N∏
i=1

1

2
=

(
1

2

)N

p(D|M2) =

N∏
i=1

2

π

√
1− x2

i =

(
2

π

)N N∏
i=1

√
1− x2

i
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Example

So the log Bayes factor is

logK = log p(D|M1)− log p(D|M2)

= N log
1

2
−N log

2

π
− log

N∏
i=1

√
1− x2

i

= N log
π

4
− 1

2

N∑
i=1

log(1− x2
i )

Let’s try this for some samples.
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Example

Sampling from a uniform
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Sampling from a semicircle
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Example

Sampling from truncated Gaussians of varying width
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Example
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Laplace vs. Gaussian

We have a set of data points {xi} with zero mean and unit variance, and we are
not sure whether to model them as Laplacian distributed M1 or Gaussian
distributed M2. What is the log Bayes factor for this model comparison if

p(x|M1) =
1√
2

exp
{
−
√

2|x|
}

p(x|M2) =
1√
2π

exp

{
−x

2

2

}
?
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Laplace vs. Gaussian

logK =

N∑
i=1

log

(
1√
2

exp
{
−
√

2|xi|
})
− log

(
1√
2π

exp

{
−x

2
i

2

})

= N log
1√
2
−
√

2

N∑
i=1

|xi| −N log
1√
2π

+
1

2

N∑
i=1

x2
i

= N

(
log
√
π −
√

2xMAD +
1

2
xMSE

)
where

xMAD =
1

N

N∑
i=1

|xi|, xMSE =
1

N

N∑
i=1

x2
i

SE So if the mean absolute deviation is far larger than the mean squared error, we
prefer the Gaussian and vice versa.
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Laplace vs. Gaussian
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The evidence

In the previous case the models were fairly simple, we were just given likelihood
functions. What if our models had tunable parameters as well? In that case we
have

p(D|Mi) =

∫
p(D|θ)p(θ|Mi) dθ

But this looks familiar, it’s the model evidence!

p(θ|D,Mi) =
p(D|θ,Mi)p(θ|Mi)

p(D|Mi)
.

Intuitively speaking, the evidence tells how how well a model explains the data,
averaged over a variety of different parameter values.
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The evidence

Let’s consider the Bayesian Bent coin from last week. In that example we had a
Bernoulli likelihood model. So given N coin flips with H heads, we had

p(π|D,Mi) =

likelihood︷ ︸︸ ︷
πH(1− π)N−H

prior︷ ︸︸ ︷
p(π|Mi)

p(D|Mi)

Let’s compare a uniform prior (M1) with a Beta prior (M2). Last week we found
that

p(D|M1) =

∫ 1

0

πH(1− π)N−HI[π ∈ [0, 1]] dπ = B(H + 1, N −H + 1)

p(D|M2) =

∫ 1

0
πH(1− π)N−Hπα−1(1− π)β−1 dπ

B(α, β)
=
B(H + α,N −H + β)

B(α, β)

So the log Bayes factor is

log
p(D|M1)

p(D|M2)
= logB(H + 1, N −H + 1)− logB(H + α,N −H + β)

+ logB(α, β)
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The evidence
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The evidence

We are able to compare two models against one another. We can even compare a
discrete set of models, by selecting the one with the highest P (D|Mi). But did
you notice that we could use this framework to select prior hyperparameters too?

log p(D|M, α, β) = logB(H + α,N −H + β)− logB(α, β)

Question How could we use this to select the best α and β?

Answer Pick the α and β such that

α∗, β∗ = arg max
α,β

log p(D|M, α, β).

This technique goes by several names: Type-II maximum likelihood, empircal
Bayes.

Obviously, we could add a hyperprior on the hyperparameters and perform Type-II
MAP, or even find a posterior distribution over α and β, but after a while this gets
too confusing and a bit silly.
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Exponential-Gamma example

A scientist is collecting exponentially distributed data with unknown decay
parameter λ. She wants to select a good prior, so she decide to perform empirical
Bayes:

N∏
i=1

p(xi|λ) =

N∏
i=1

λe−λxi = λNe−λNx̄

p(λ|α, β) =
βα

Γ(α)︸ ︷︷ ︸
normalizer

λα−1e−βλ

where x̄ := 1
N

∑N
i=1 xi. So the evidence is∫ ∞

0

λNe−λNx̄ · β
α

Γ(α)
λα−1e−βλ dλ =

βα

Γ(α)

∫ ∞
0

λN+α−1e−λ(β+Nx̄) dλ

=
βα

Γ(α)

Γ(N + α)

(β +Nx̄)N+α
.

How did we know the answer to the integral? It looks like the same form as the
normalizer of the prior!
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Linear regression

II: Linear regression
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Regression

Recall we wanted to fit this Mauna Loa data
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Linear Regression

Before we had a dataset of the form
D = {x1, x2, x3, ..., xN}.

Now we have data pairs
D = {(x1, y1), (x2, y2), (x3, y3), ..., (xN , yN )}

Recall George Box “All models are wrong”.

Want to predict y∗|x∗
Want to measure ‘goodness of fit’

Want to handle noise

We use ‘noise’ to capture what our model
cannot.
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The linear model

In high school you will have learned the
equation of a straight line

y = wx+ b =
[
w b

] [x
1

]
w is the gradient of the line and b is the
y-intercept. This is a linear equation.

Typically in machine learning, you will
see this rewritten as

y =
[
w b

] [x
1

]
= w>x

This separates the model parameters
w =

[
w b

]
from the inputs

x =
[
x 1

]>
.

In general a function f : X → Y is linear
if

f(x1 + x2) = f(x1) + f(x2)

f(ax) = af(x)

So y = w>x is linear in w (and x).
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The linear model

Given a training set D = {(x1, y1), (x2, y2), (x3, y3), ..., (xN , yN )}, we might
assume a linear model + a noise term ni ∼ N (ni; 0, σ2), so

yi = w>xi + ni

This is equivalent to writing a likelihood of the form

p(yi|w, xi, σ2) = N (yi;w
>xi, σ

2).

i.e. yi is Gaussian distributed about a mean w>xi.

Now how do we fit the parameters w and σ2? Next we will consider:

Maximum likelihood

Bayesian inference

Type-II maximum likelihood
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The linear model

The log-likelihood is

L(w, σ2) =

N∑
i=1

log

(
1√

2πσ2
exp

{
− (yi −w>xi)2

2σ2

})

= −N
2

log 2πσ2 − 1

2σ2

N∑
i=1

(yi −w>xi)
2

To make the maths easier, we stack the data in a matrix X =
[
x1 x2 ... xN

]
and a vector y =

[
y1 y2... yN

]>
. This leads to an alternate formulation of L

L(w, σ2) = −N
2

log 2πσ2 − 1

2σ2
(y− X>w)>(y− X>w)

This is the same likelihood as for a model L(w, σ2) = N (y|X>w, σ2I).
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The linear model

The maximum likelihood parameter estimates are

wML = (XX>)−1Xy

σ2
ML =

1

N
(y− X>wML)>(y− X>wML)

These are sometimes referred to as a the normal equations.

Looking at the first line, if X were square and full rank, then we could write

w = (XX>)−1Xy = X−>X−1Xy = X−>y

so X>w = y, which is the equation for the mean of the regression model. So why
we use (XX>)−1X instead of X−>? It is the pseudoinverse of X>. Recall that the
pseudoinverse is X† = (X>X)X>.
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A 2D example: N=2
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A 2D example: N=5
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A 2D example: N=10
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A 2D example: N=25
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A 2D example: N=50
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A 2D example: N=100
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A 2D example: N=250
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A 2D example: N=500
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A 2D example: N=1000
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Feature transformations

The model we just presented is easy to use, but how useful is it really? What
happens if we are presented with data like this?
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Feature transformations

The solution is very simple, and is one of the cornerstones of machine learning.
Say instead of the linear equation

y = wx+ b,

we had something more complex such as

y = w1 · φ1(x) + w2 · φ2(x) + w3 · φ3(x) + w4 · φ4(x) + b · 1

=
[
w1 w2 w3 w4 b

]

φ1(x)
φ2(x)
φ3(x)
φ4(x)

1


= w>φ(x).

The function φ(x) is called a feature transform. It is generally a nonlinear
transformation of the data space X , typically lifting to higher dimensions.
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Feature transformations

An example of a feature transformation is the trigonometric mapping

φ(x) =
[
cosx sinx cos 2x sin 2x · · · cosNx sinNx 1

]>
.

This is a good way to represent periodic functions. It is related to a common
decomposition of functions you may have come across, the Fourier transform.

Another feature transform is the monomials

φ(x) =
[
x x2 x3 · · · xN 1

]>
.

This is good for modelling polynomial functions.

Another is the radial basis function

φ(x) =
[
eλ1‖x−µ1‖ eλ2‖x−µ2‖ eλ3‖x−µ3‖ · · · eλN‖x−µN‖ 1

]>
This is handy for locally approximating smooth functions.
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Feature transformations

So the equation we now have is

y = w>φ(x).

This is nonlinear in x, but it is linear in w still since

(w1 + w2)>φ(x) = w>1 φ(x) + w>2 φ(x) = y1 + y2

and we can also show that it is linear in φ(x).

So given a training set D = {(x1, y1), (x2, y2), (x3, y3), ..., (xN , yN )} we might try
to fit the model

yi = w>φ(xi) + ni

where ni ∼ N (ni; 0, σ2) again. This can also be written

p(yi|w,φ(xi), σ
2) = N (yi,w

>φ(xi), σ
2)
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Feature transformations

Going through the movements of maximum likelihood again, we end up at the
normal equations

wML = (ΦΦ>)−1Φy

σ2
ML =

1

N
(y−Φ>wML)>(y−Φ>wML)

Notice that the only difference with the linear equations on X is that we have
replaced X with Φ. This is because the original equations are linear in w and Φ
(but not X).

A useful way to think about what we have done is to see the feature mapping
x 7→ φ(x) as mapping the data to a space, a feature space, where it lies on a
straight line.
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A 2D example: N=2

3 2 1 0 1 2 3
x

8

6

4

2

0

2

4

y

Daniel Worrall (UvA) PTML 06 October 16, 2019 41 / 88



A 2D example: N=5
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A 2D example: N=10
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A 2D example: N=25
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A 2D example: N=50
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A 2D example: N=100
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A 2D example: N=250
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A 2D example: N=500
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A 2D example: N=1000
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Feature transformations

The issue with maximum likelihood is that it tends to overfit.

Slide from Rasmussen and Gharamani 4F13
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Bayesian linear regression

The Bayesian way to do regression protects against overfitting in the low-data
scenario. We shall place a prior on the parameters w. Let’s just do this on the
mean. We choose a zero mean Gaussian with covariance matrix σ2

priorI. This leads
to the following equations

Forward model

p(w|0, σ2
prior) = N (w|0, σ2

priorI)

p(y|w,X, σ2
lik) = N (y|w>X, σ2

likI)

Posterior

p(w|y,X, σ2
lik) =

N (y|w>X, σ2
likI)N (w|0, σ2

priorI)∫
WN (y|w>X, σ2

likI)N (w|0, σ2
priorI) dw

= N (w|µ,Σ)

µ =
1

σ2
lik

ΣXy, Σ =

(
1

σ2
prior

I +
1

σ2
lik

XX>
)−1

Notice how the posterior precision is a mean of the prior precision and the
data-weighted likelihood precision
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Bayesian linear regression

Posterior predictive
We need to figure out the posterior predictive distribution (PPD). Lucky the PPD
is also a Gaussian! So

p(y∗|x∗,D, σ2
lik) =

∫
w

N (y∗|w>x, σ2
lik)N (w|µ,Σ) dw = N (y∗|µ>x, σ2

lik + x>Σx)

The PPD uses the mean of the posterior distribution. The variance is a sum of
σ2
lik and x>Σx. This extra term gets larger the larger the data term is, as

measured under the posterior covariance.

Evidence

log p(D|σ2
lik, σ

2
prior) = p(y|X, σ2

lik, σ
2
prior) = log

∫
w

N (y|w>X, σ2
lik)N (w|0, σ2

priorI) dw

= logN (y|0, σ2
likI + σ2

priorX
>X︸ ︷︷ ︸

K

)

= −1

2
y>K−1y− 1

2
log |K| − N

2
log 2π
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Conclusion

Rounding up
Given data D = {xi} and a forward model p(x|θ), you should be able to

Find θ∗ = arg maxθ p(x|θ)

Find p(θ|D) ∝ p(x|θ)p(θ)

Know what the posterior predictive is p(x∗|D)

Given data D = {xi} and a collections of models M = {M1,M2, ...}, you should
be able to

Find the (log) Bayes’ factor logK = p(D|M1)/p(D|M2)

Find best model in M: M∗ = arg maxMi∈M p(x|Mi)
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Mixture models

III: Mixture Models
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Mixture of Gaussians

Some complicated distributions can be modelled as mixture models. Take for
instance the mixture of Gaussians (MoG) in 1D

si ∼ Cat(π)

xi|si ∼ N (xi;µsi , σ
2
si)

where si ∈ {1, 2, ...,M}.
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Clustering

This is a canonical example of what is known as a latent variable model . The
cluster identity si is known as a latent variable. Note that there is one latent
variable per datum xi. Denoting θm = {µm, σ2

m}, this has a single-point
likelihood

p(xi|π) =

M∑
m=1

P (s = m)p(xi|s = m)

=

M∑
m=1

πmp(xi|θm)

Before observing any data, the term P (s = m) = πm is the prior probability that
we expect a datum x to be produced by cluster m.

The posterior probability of assigning a point xi to cluster m is

P (si = m|xi) =
p(xi|si = m)πm∑
m′ p(xi|si = m′)πm′

= rmi

This is often called the responsibility .
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Training

The total log-likelihood is

L(θ,π) =

N∑
i=1

log

M∑
m=1

πmp(xi|θm)

The log
∑

is a notorious computationally intractable term1. So we have to use
numerical methods to optimize this log-likelihood. Thus we need derivatives

∂L
∂θm

=
∂

∂θm

N∑
i=1

log

M∑
m=1

πmp(xi|θm)

=

N∑
i=1

πm∑M
m=1 πmp(xi|θm)

∂p(xi|θm)

∂θm

1In practice, we actually optimize a lower bound on the log-likelihood using a technique
known as variational inference.
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Training

A very important trick, which comes up again and again is the log-derivative trick

∂ log p(xi|θm)

∂θm
=

1

p(xi|θm)

∂p(xi|θm)

∂θm
=⇒ p(xi|θm)

∂ log p(xi|θm)

∂θm
=
∂p(xi|θm)

∂θm

So

∂L
∂θm

=

N∑
i=1

πm∑M
m=1 πmp(xi|θm)

∂p(xi|θm)

∂θm

=

N∑
i=1

πmp(xi|θm)∑M
m=1 πmp(xi|θm)︸ ︷︷ ︸

rmi

∂ log p(xi|θm)

∂θm

=

N∑
i=1

rmi
∂ log p(xi|θm)

∂θm

The gradient of the log-likelihood of each point xi wrt each cluster parameters θm
is reweighted by the posterior probability that that cluster explains data point xi.
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Training

We also find

∂L
∂πm

=
∂

∂πm

N∑
i=1

log

M∑
m=1

πmp(xi|θm)

=

N∑
i=1

p(xi|θm)∑M
m=1 πmp(xi|θm)

=

N∑
i=1

rmi
πm
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The Expectation-Maximization Algorithm

By optimizing L we can cluster. This is a specific instance of a famous algorithm
called the Expectation-Maximization algorithm

E-step

rkmi =
πkmp(xi|θkm)∑M
m=1 π

k
mp(xi|θkm)

M-step

θk+1,πk+1 = arg max
θ,π

L(θ,π)

The E-step gets its name from the fact that you are computing the expected
assignments.
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The Expectation-Maximization Algorithm

For the M-step, we notice that

∂L
∂πm

=

N∑
i=1

rkmi
πm

= 0 =⇒ πk+1
m =

N∑
i=1

rkmi

If we use a Mixture of Gaussians, then

∂L
∂µm

=

N∑
i=1

rkmi
xi − µm
σ2
m

= 0 =⇒ µk+1
m =

∑N
i=1 r

k
mixi∑N

i=1 rmi

∂L
∂σm

= −
N∑
i=1

rkmi

(
σ2
m + (xi − µm)2

σ3
m

)
= 0 =⇒ σ2,k+1

m =

∑N
i=1 r

k
mi(xi − µm)2∑N
i=1 r

k
mi

The mean update is the responsibility weighted

Daniel Worrall (UvA) PTML 06 October 16, 2019 61 / 88



The Expectation-Maximization Algorithm

Notice that each update can be rewritten as

µk+1
m =

N∑
i=1

r̃kmixi

σ2,k+1
m =

N∑
i=1

r̃kmi(xi − µm)2

where

r̃kmi =
rkmi∑N
i=1 r

k
mi

represents the contribution of point xi to cluster m.
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The Expectation-Maximization Algorithm

The complete algorithm is

E-step

rmi =
πkmp(xi|θkm)∑M
m=1 π

k
mp(xi|θkm)

M-step

πk+1
m =

N∑
i=1

rmi

µk+1
m =

N∑
i=1

r̃kmixi

σ2,k+1
m =

N∑
i=1

r̃kmi(xi − µm)2

r̃kmi =
rkmi∑N
i=1 r

k
mi
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The Expectation-Maximization Algorithm
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The Expectation-Maximization Algorithm
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The Expectation-Maximization Algorithm
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The Expectation-Maximization Algorithm
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The Expectation-Maximization Algorithm
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The Expectation-Maximization Algorithm
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The Expectation-Maximization Algorithm
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The Expectation-Maximization Algorithm
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The Expectation-Maximization Algorithm
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The Expectation-Maximization Algorithm
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The Expectation-Maximization Algorithm
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Training curve
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Clustering Summary

Why is the fit not perfect?

Is this a Bayesian model?

If not Bayesian, is a Bayesian formulation possible?

Convergence is guaranteed, but not always to the global maximum

How could we select the number of cluster centers?

To answer the last question, we could use model comparison

M∗ = arg max
M

p(D|M)
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Summary of second half

You should be able to

write down the log likelihood of a model log p(D|θ)
perform maximum likelihood arg maxθ p(D|θ)
perform Bayesian inference in conjugate models p(θ|D) = p(D|θ)p(θ)

p(D)

perform maximum a posteriori arg maxθ p(D|θ)p(θ)
perform posterior predictive inference p(x∗|D) =

∫
p(x∗|θ)p(θ|D) dθ

identify normalizing constants in distributions

perform Bayesian model comparison arg maxM∈M p(D|M)
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Summary of second half

Good luck in the exam!
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Appendix

Appendix: Matrix Calculus
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Multivariate Calculus*

We often deal with derivatives of functions. The derivatives you will have
encountered already will have been derivatives of scalar functions f with respect
to scalar arguments x.

f : scalar argument→ scalar output

The derivative is thus a scalar function, which we can understand from the
definition of the derivative

df

dx
:= lim

δx→0

f(x+ δx)− f(x)

δx
=

scalar

scalar
= scalar.

Note the common alternative notations

df

dx
=

d

dx
f = f ′(x)
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Multivariate Calculus*

Multivariate calculus concerns itself with derivatives of functions that have
arguments and outputs (input and output) that are not necessarily scalars.

e.g.

f : vector→ scalar f : matrix→ scalar f : vector→ vector
f(x) = 1

2x
>x f(X) = det X f(x) = x√

x>x

Whenever there is more than one argument, we always use a ∂ instead of a d for
derivatives.
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Multivariate Calculus: vector→ scalar*

In a practical setting, the way I find easiest to compute gradients is to do it
element by element.

e.g. Compute the derivative of f(x) = 1
2x
>x wrt x. We know that f : vector→

scalar so

∂

∂xi
f =

∂

∂xi

1

2
x>x

=
1

2

∂

∂xi

J∑
j=1

xjxj

=
1

2

∂

∂xi
(x2

1 + ...+ x2
i + ...+ x2

J)

=
1

2
(0 + 0 + ...+ 2xi + ...+ 0)

= xi

We write the answer as a vector

∂f

∂x
=


∂f
∂x1
∂f
∂x2

...
∂f
∂xN

 =


x1

x2

...
xN

 = x

In maths and physics, ∂
∂x is called the

gradient, sometimes written grad or ∇.
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Multivariate Calculus: vector→ vector*

e.g. Compute the derivative of f(x) = Ax wrt x. We know that f : vector→
vector so

∂

∂xj
fi =

∂

∂xj
[Ax]i

=
∂

∂xj

∑
k

Aikxk

=
∂

∂xj
(Ai1x1 + ...+Aijxj + ...)

= Aij

We write the answer as a matrix

∂f

∂x
=


∂f1
∂x1

∂f2
∂x1

. . . ∂fM
∂x1

∂f1
∂x2

∂f2
∂x2

. . . ∂fM
∂x2

...
...

. . .
...

∂f1
∂xN

∂f2
∂xN

. . . ∂fM
∂xN



=


A11 A21 . . . AM1

A12 A22 . . . AM2

...
...

. . .
...

A1N A2N . . . AMN


= A>
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Multivariate Calculus*

Other results are

∂

∂A
x>Ay = xy>

∂

∂x

1

2
x>Ax = Ax

∂

∂x
x>Ay =

∂

∂x
y>A>x = Ay

∂

∂A
log det A = A−1

The Matrix Cookbook In general, most of us are fairly lazy human beings and
so except for a few rules, which are good to know off by heart, most of the juicy
derivatives have been tabulated in a important resourse called The Matrix
Cookbook (Wikipedia is pretty good too).
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Multivariate Calculus*

How would we fit a multivariate Gaussian to data? The likelihood term is easy2

L(θ) = L(µ,Σ) =

N∑
i=1

log

(
|det 2πΣ|−1/2 exp

{
−1

2
(xi − µ)>Σ−1(xi − µ)

})

= −1

2

N∑
i=1

log |det 2πΣ| − 1

2

N∑
i=1

log exp
{

(xi − µ)>Σ−1(xi − µ)
}

= −N
2

log det 2πΣ− 1

2

N∑
i=1

(xi − µ)>Σ−1(xi − µ)

Note that |det Σ| = det Σ from the definition that Σ is positive-definite. How do
we take the gradient ∂

∂µL or ∂
∂ΣL?

In general matrix derivatives are just plain nasty. You will not be asked to do
these yourselves, but below is a sample of the ugliness that I am sparing you.

2I hope that when I have been saying ‘easy’ students have been able to detect the slight tone
of irony in my voice.
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Multivariate Calculus: Mean*

Let’s begin with the mean. First of all, we see that the first term doesn’t depend
on µ at all, so we can drop it

∂

∂µ
L =

∂

∂µ

[
−N

2
log det 2πΣ− 1

2

N∑
i=1

(xi − µ)>Σ−1(xi − µ)

]

=
∂

∂µ

[
−1

2

N∑
i=1

(xi − µ)>Σ−1(xi − µ)

]

=
∂

∂µ

[
−1

2

N∑
i=1

�����
x>i Σ

−1xi − µ>Σ−1xi − x>i Σ
−1µ + µΣ−1µ

]

= −1

2

N∑
i=1

−Σ−1xi −Σ−1xi + 2Σ−1µ

= −1

2
Σ−1

N∑
i=1

(µ− xi) = 0 =⇒ µ =
1

N

N∑
i=1

xi
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Multivariate Calculus: Variance*

Again it is easier to use the precision parameterization where Λ = Σ−1.

∂

∂Λ
L =

∂

∂Λ

[
−N

2
log det 2πΛ−1 − 1

2

N∑
i=1

(xi − µ)>Λ(xi − µ)

]

=
∂

∂Λ

[
�������
−N

2
log det 2π +

N

2
log det Λ− 1

2

N∑
i=1

(xi − µ)>Λ(xi − µ)

]

=
N

2
Λ−1 − 1

2

N∑
i=1

(xi − µ)>(xi − µ) = 0

=⇒ Σ = Λ−1 =
1

N

N∑
i=1

(xi − µ)(xi − µ)>
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Multivariate Calculus*

The maximum likelihood mean vector and covariance matrix for the Gaussian are

µ =
1

N

N∑
i=1

xi

Σ =
1

N

N∑
i=1

(xi − µ)(xi − µ)>

Again, do these look familiar?
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